How To Successfully Deploy GenAI On Edge Devices


Generative AI (GenAI) burst onto the scene and into the public’s imagination with the launch of ChatGPT in late 2022. Users were amazed at the natural language processing chatbot’s ability to turn a short text prompt into coherent humanlike text including essays, language translations, and code examples. Technology companies – impressed with ChatGPT’s abilities – have started looking ... » read more

Fallback Fails Spectacularly


Conventional AI/ML inference silicon designs employ a dedicated, hardwired matrix engine – typically called an “NPU” – paired with a legacy programmable processor – either a CPU, or DSP, or GPU. The common theory behind these two-core (or even three core) architectures is that most of the matrix-heavy machine learning workload runs on the dedicated accelerator for maximum efficienc... » read more

Embrace The New!


The ResNet family of machine learning algorithms was introduced to the AI world in 2015. A slew of variations was rapidly discovered that at the time pushed the accuracy of ResNets close to the 80% threshold (78.57% Top 1 accuracy for ResNet-152 on ImageNet). This state-of-the-art performance at the time, coupled with the rather simple operator structure that was readily amenable to hardware ac... » read more

Is Transformer Fever Fading?


The hottest, buzziest thing bursts onto the scene and captures the attention of the business press and even the general public. Scads of articles and videos are published about The Hot Thing. And then, in the blink of an eye, the world’s attention shifts to the Next New Thing! Are we talking about the latest pop song that leads the Spotify streaming charts? Perhaps a new fashion trend that... » read more

BYO NPU Benchmarks


In our last blog post, we highlighted the ways that NPU vendors can shade the truth about performance on benchmark networks such that comparing common performance scores such as “Resnet50 Inferences / Second” can be a futile exercise. But there is a straight-forward, low-investment method for an IP evaluator to short-circuit all the vendor shenanigans and get a solid apples-to-apples result... » read more

Considerations For Accelerating On-Device Stable Diffusion Models


One of the more powerful – and visually stunning – advances in generative AI has been the development of Stable Diffusion models. These models are used for image generation, image denoising, inpainting (reconstructing missing regions in an image), outpainting (generating new pixels that seamlessly extend an image's existing bounds), and bit diffusion. Stable Diffusion uses a type of dif... » read more

Flipping Processor Design On Its Head


AI is changing processor design in fundamental ways, combining customized processing elements for specific AI workloads with more traditional processors for other tasks. But the tradeoffs are increasingly confusing, complex, and challenging to manage. For example, workloads can change faster than the time it takes to churn out customized designs. In addition, the AI-specific processes may ex... » read more

Does Your NPU Vendor Cheat On Benchmarks?


It is common industry practice for companies seeking to purchase semiconductor IP to begin the search by sending prospective vendors a list of questions, typically called an RFI (Request for Information) or simply a Vendor Spreadsheet. These spreadsheets contain a wide gamut of requested information ranging from background on the vendor’s financial status, leadership team, IP design practices... » read more

Your AI Chip Doesn’t Need An Expensive Insurance Policy


Imagine you are an architect designing a new SoC for an application that needs substantial machine learning inferencing horsepower. The team in marketing has given you a list of ML workloads and performance specs that you need to hit. The in-house designed NPU accelerator works well for these known workloads – things like MobileNet v2 and Resnet50. The accelerator speeds up 95+% of the comput... » read more

Compiler-Driven Performance Boosts For GPNPUs


The GNU C Compiler – GCC – was first released in 1987. 36 years ago. Several version streams are still actively being developed and enhanced, with GCC13 being the most advanced, and a GCC v10.5 released in early July this year. You might think that with 36 years of refinement by thousands of contributors that penultimate performance has been achieved. All that could be discovered has bee... » read more

← Older posts