Power/Performance Bits: Dec. 3


Waking up IoT devices Researchers at UC San Diego developed an ultra-low power wake-up receiver chip that aims to reduce the power consumption of sensors, wearables, and Internet of Things devices that only need to communicate information periodically. "The problem now is that these devices do not know exactly when to synchronize with the network, so they periodically wake up to do this eve... » read more

System Bits: July 30


A camera that sees around corners Researchers at Stanford University developed a camera system that can detect moving objects around a corner, looking at single particles of light reflected on a wall. “People talk about building a camera that can see as well as humans for applications such as autonomous cars and robots, but we want to build systems that go well beyond that,” said Gordon... » read more

Power/Performance Bits: May 14


Detecting malware with power monitoring Engineers at the University of Texas at Austin and North Carolina State University devised a way to detect malware in large-scale embedded computer systems by monitoring power usage and identifying unusual surges as a warning of potential infection. The method relies on an external piece of hardware that can be plugged into the system to observe and m... » read more

Power/Performance Bits: Feb. 26


Integrated RRAM for edge AI Researchers at CEA-Leti and Stanford University have developed the first circuit integrating multiple-bit non-volatile Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide 2.3-times the capacity of existing RRAM. The proof-of-concept chip monolithically integrates two heterogeneous technologies: 18KB of on-chip... » read more

Power/Performance Bits: Feb. 19


Flexible energy harvesting rectenna Researchers from MIT, Universidad Politécnica de Madrid, University Carlos III of Madrid, Boston University, University of Southern California, and the Army Research Laboratory created a flexible rectenna capable of converting energy from Wi-Fi signals into electricity to power small devices and sensors. The device uses a flexible RF antenna to capture e... » read more

Power/Performance Bits: Dec. 11


Internet of Ears for smart buildings Scientists at Case Western Reserve University proposed a new way for smart homes to determine building occupancy: sensors that 'listen' to vibration, sound, and changes in the existing ambient electrical field. "We are trying to make a building that is able to 'listen' to the humans inside," said Ming-Chun Huang, an assistant professor in electrical engi... » read more

Power/Performance Bits: Sept. 11


Non-toxic photoluminescent nanoparticles Researchers from Osaka University developed a way to improve display technologies using non-toxic light-emitting nanoparticles. In trying to replace cadmium and other toxic materials used in quantum dots, scientists have turned to non-toxic nanoparticles that emit light in an efficient manner by creating I–III–VI semiconductors, such as silver in... » read more

Manufacturing Bits: Aug. 21


World’s smallest transistor The Karlsruhe Institute of Technology (KIT) has developed what researchers say is the world’s smallest transistor. Researchers have devised a single-atom transistor. The transistor switches an electrical current via a single atom, which resides in a gel electrolyte. The device also works at room temperature. While others have developed single-atom transist... » read more

Power/Performance Bits: June 12


AI for solar materials In the search for better organic photovoltaic materials, researchers at Osaka University turned to machine learning to help identify candidates. While organic photovoltaics (OPVs) are promising on a cost basis, they do not yet have the required power conversion efficiency (PCE) necessary for commercialization. A key element in this is the semiconducting polymer layer. ... » read more

Manufacturing Bits: Jan. 2


World’s coldest chip Using a network of nuclear refrigerators, the University of Basel and others claim to have set the record for the world’s coldest chip. Researchers have cooled a chip to a temperature lower than 3 millikelvin. A millikelvin is one thousandth of a kelvin. Absolute zero is 0 kelvin or minus 273.15 °C. In the experiment, researchers used a chip that includes a Coulomb... » read more

← Older posts Newer posts →