On-Chip Power Distribution Modeling Becomes Essential Below 7nm


Modeling power distribution in SoCs is becoming increasingly important at each new node and in 3D-ICs, where tolerances involving power are much tighter and any mistake can cause functional failures. At mature nodes, where there is more metal, power problems continue to be rare. But at advanced nodes, where chips are running at higher frequencies and still consuming the same or greater power... » read more

DarkGates: A Hybrid Power-Gating Architecture to Mitigate the Performance Impact of Dark-Silicon in High Performance Processors


New research paper from ETH Zurich and others. Abstract "To reduce the leakage power of inactive (dark) silicon components, modern processor systems shut-off these components' power supply using low-leakage transistors, called power-gates. Unfortunately, power-gates increase the system's power-delivery impedance and voltage guardband, limiting the system's maximum attainable voltage (i.e., ... » read more

Designers Face Growing Problems With On-Chip Power Distribution


The technology evolution in semiconductor manufacturing has led to chips with ever-higher power densities, which is leading to serious problems with on-chip power distribution. Specifically, the problems surrounding voltage drop—or IR drop (from V=IxR)—have become so acute that we have seen multiple companies starting to get back dead silicon from the fab. For example, a recent 7nm chip ... » read more