Programmable Quantum Emitter Formation In Si (Lawrence Berkeley National Lab., UC Berkeley)

A technical paper titled “Programmable quantum emitter formation in silicon” was published by researchers at Lawrence Berkeley National Laboratory and University of California Berkeley. Abstract: "Silicon-based quantum emitters are candidates for large-scale qubit integration due to their single-photon emission properties and potential for spin-photon interfaces with long spin coherence t... » read more

2D UltraLow Temperatures, High Performance Quantum

A new technical paper titled "Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures" was published by researchers at EPFL and National Institute for Materials Science (Japan). Abstract "The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics and spintronics. ... » read more

Research Bits: June 25

Quantum on silicon Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) developed a platform to probe and control qubits in silicon for quantum networks, after an earlier discovery that defects in silicon could be used to send and store quantum information over widely used telecommunications wavelengths. The device uses an electric diode to manipulate... » read more

Addressing Quantum Computing Threats With SRAM PUFs

You’ve probably been hearing a lot lately about the quantum-computing threat to cryptography. If so, you probably also have a lot of questions about what this “quantum threat” is and how it will impact your cryptographic solutions. Let’s take a look at some of the most common questions about quantum computing and its impact on cryptography. What is a quantum computer? A quantum comput... » read more

Research Bits: June 4

Ultra-pure silicon Researchers from the University of Manchester and University of Melbourne developed a technique to engineer ultra-pure silicon that could be used in the construction of high-performance qubit devices that extend quantum coherence times. The highly purified silicon chips house and protect the qubits so they can sustain quantum coherence much longer, enabling complex calcul... » read more

Compilation Challenges Of Scaling Up Quantum Computing With Superconducting Chiplet Architecture

A technical paper titled “MECH: Multi-Entry Communication Highway for Superconducting Quantum Chiplets” was published by researchers at University of California San Diego, University of California Santa Barbara, and Cisco Quantum Lab. Abstract: "Chiplet architecture is an emerging architecture for quantum computing that could significantly increase qubit resources with its great scalabili... » read more

Voltage Reference Architectures For Harsh Environments: Quantum Computing And Space

A technical paper titled “Cryo-CMOS Voltage References for the Ultrawide Temperature Range From 300 K Down to 4.2 K” was published by researchers at Delft University of Technology, QuTech, Kavli Institute of Nanoscience Delft, and École Polytechnique Fédérale de Lausanne (EPFL). Abstract: "This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in ... » read more

Feasibility and Potential of Quantum Computing For a Typical EDA Optimization Problem

A new technical paper titled "QCEDA: Using Quantum Computers for EDA" was published by researchers at Fraunhofer IESE, RPTU Kaiserslautern, DLR (Germany), and OTH Regensburg. Abstract "The field of Electronic Design Automation (EDA) is crucial for microelectronics, but the increasing complexity of Integrated Circuits (ICs) poses challenges for conventional EDA: Corresponding problems are of... » read more

Low-Overhead Fault-Tolerant Quantum Memory (IBM)

A new technical paper titled "High-threshold and low-overhead fault-tolerant quantum memory" was published by researchers at IBM Quantum. Abstract "The accumulation of physical errors prevents the execution of large-scale algorithms in current quantum computers. Quantum error correction promises a solution by encoding k logical qubits onto a larger number n of physical qubits, such t... » read more

Superconducting Qubits Made Using Industry-Standard, Advanced Semiconductor Manufacturing (imec, KU Leuven)

A new technical paper titled "High-coherence superconducting qubits made using industry-standard, advanced semiconductor manufacturing" was published by researchers at imec and KU Leuven. Abstract: "The development of superconducting qubit technology has shown great potential for the construction of practical quantum computers. As the complexity of quantum processors continues to grow, the ... » read more

← Older posts