Week In Review: Semiconductor Manufacturing, Test


Chinese memory chip maker YMTC and dozens of other Chinese entities are "at risk" of being added to a trade blacklist as soon as Dec. 6, a U.S. Commerce Department official said in prepared remarks seen by Reuters. SMIC co-CEO Zhao Haijun said on an earnings call that recent export controls from the United States will have an "adverse impact" on the company's production. The U.K. has rule... » read more

Six Qubit Processor (TU Delft, QuTech, TNO)


A new technical paper titled "Universal control of a six-qubit quantum processor in silicon" was just published by researchers at Delft University of Technology, QuTech and Netherlands Organization for Applied Scientific Research (TNO). "We increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fa... » read more

Using Reservoir Offset Voltage Of a Quantum Dot as Gate Electrode


Technical paper titled "The functions of a reservoir offset voltage applied to physically defined p-channel Si quantum dots" from researchers at Tokyo Institute of Technology and Device Technology Research Institute (D-Tech), National Institute of Advanced Industrial Science and Technology (AIST). Abstract "We propose and define a reservoir offset voltage as a voltage commonly applied to b... » read more

Qubits made by advanced semiconductor manufacturing


Abstract: "Full-scale quantum computers require the integration of millions of qubits, and the potential of using industrial semiconductor manufacturing to meet this need has driven the development of quantum computing in silicon quantum dots. However, fabrication has so far relied on electron-beam lithography and, with a few exceptions, conventional lift-off processes that suffer from low yie... » read more

Metasurface Colloidal Quantum Dot Photodetectors


Abstract: "Efficient photodetectors that can be easily engineered for a specific spectral window are of high interest. Here, we report on the design, fabrication, and characterization of metasurface-enhanced photodetectors and photodiodes using colloidal quantum dots. We fabricate photoconductors optimized for the wavelength range around 1550 nm featuring responsivities of up to 8000 A/W wit... » read more

Light-Emitting V-Pits: An Alternative Approach toward Luminescent Indium-Rich InGaN Quantum Dots


Abstract: "Realization of fully solid-state white light emitting devices requires high efficiency blue, green, and red emitters. However, challenges remain in boosting the low quantum efficiency of long wavelength group-III-nitride light emitters through conventional quantum well growth. Here, we demonstrate a new direct metal–organic chemical vapor deposition approach to grow In-rich InGa... » read more

The Race To Make Better Qubits


One of the big challenges in quantum computing is getting qubits to last long enough to do something useful with them. After decades of research, there now appears to be tangible progress. The challenge with any new semiconductor technology is to improve performance by one or more orders of magnitude without discarding a half-century of progress in other areas. Qubits based on silicon quantu... » read more

Buried nanomagnet realizing high-speed/low-variability silicon spin qubits: implementable in error-correctable large-scale quantum computers


Abstract: "We propose a buried nanomagnet (BNM) realizing highspeed/low-variability silicon spin qubit operation, inspired by buried wiring technology, for the first time. High-speed quantum-gate operation results from large slanting magnetic-field generated by the BNM disposed quite close to a spin qubit, and low-variation of fidelity thanks to the self-aligned fabrication process. Employing ... » read more

Uniform Spin Qubit Devices with Tunable Coupling in an All-Silicon 300 mm Integrated Process


Abstract: Larger arrays of electron spin qubits require radical improvements in fabrication and device uniformity. Here we demonstrate excellent qubit device uniformity and tunability from 300K down to mK temperatures. This is achieved, for the first time, by integrating an overlapping polycrystalline silicon-based gate stack in an ‘all-Silicon’ and lithographically flexible 300mm flow. ... » read more

Will Co-Packaged Optics Replace Pluggables?


As optical connections work their way deeper into the data center, a debate is underway. Is it better to use pluggable optical modules or to embed lasers deep into advanced packages? There are issues of convenience, power, and reliability driving the discussion, and an eventual winner isn’t clear yet. “The industry is definitely embracing co-packaged optics,” said James Pond, principal... » read more

← Older posts