Power/Performance Bits: Nov. 21


Greener greenhouses Researchers at the University of California, Santa Cruz are testing greenhouses capable of generating some of their own energy, without hampering plant growth. Greenhouses use electricity to control temperature and power fans, lights, and other monitoring systems. Electricity-generating solar greenhouses utilize Wavelength-Selective Photovoltaic Systems (WSPVs), a novel ... » read more

System Bits: June 20


The case against general-purpose processors With a large number of emerging applications such as implantables, wearables, printed electronics, and IoT have ultra-low area and power constraints, and these applications relying on ultra-low-power general purpose microcontrollers and microprocessors, there are drawbacks, researchers at the University of Illinois and the University of Minnesota rem... » read more

Power/Performance Bits: June 13


Theoretical all-carbon circuits Engineers at the University of Texas at Dallas, the University of Illinois at Urbana-Champaign, the University of Central Florida, and Northwestern University designed a novel computing system made solely from carbon. "The concept brings together an assortment of existing nanoscale technologies and combines them in a new way," said Dr. Joseph S. Friedman, ass... » read more

Power/Performance Bits: Jan. 24


Printable circuits with silver nanowires Scientists at Duke University compared the conductivity of films made from different shapes of silver nanostructures and found that electrons move through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function... » read more

Photonics Moves Closer To Chip


Silicon photonics is resurfacing after more than a decade in the shadows, driven by demands to move larger quantities of data faster, using extremely low power and with minimal heat. Until recently, much of the attention in photonics focused on moving data between servers and storage. Now there is growing interest at the PCB level and in heterogeneous multi-chip packages. Government, academi... » read more

System Bits: Jan. 5


Faster quantum dot entanglement Due to entanglement between distant quantum objects being an important ingredient for future information technologies, ETH Zurich researchers have developed a method with which such states can be created a thousand times faster than before. [caption id="attachment_24629" align="alignright" width="300"] In two entangled quantum objects the spins are in a super... » read more

System Bits: Dec. 15


Building chips skyscraper style With the aim of boosting electronic performance by factor of a thousand, a team of researchers led by Stanford University engineers have created a skyscraper-like chip design, based on materials more advanced than silicon. For many years, computer systems have been designed with processors and memory chips laid out like single-story structures in a suburb whe... » read more

Power/Performance Bits: Oct. 20


Memristors come in threes The race is on to produce a commercial memristor, and a duo from ETH Zurich may be providing a bit more push. "Basically, memristors require less energy since they work at lower voltages," explained Jennifer Rupp, professor in the Department of Materials at ETH Zurich. "They can be made much smaller than today's memory modules, and therefore offer much greater de... » read more

Chasing After Quantum Dots


In the 1980s, researchers stumbled upon a tiny particle or nanocrystal with unique electrical properties. These mysterious nanocrystals, which are based on semiconductor materials, were later named quantum dots. Quantum dots were curiosity items until 2013, when Sony launched the world’s first LCD TV using these inorganic semiconductor nanocrystals. Basically, when inserted into an LCD TV,... » read more

Manufacturing Bits: August 25


South Pole neutrinos A group of researchers using an instrument buried deep in the ice at the South Pole have announced a new observation of high-energy neutrinos from beyond our solar system and the galaxy. The IceCube Neutrino Observatory, a cubic-kilometer-sized detector sunk into the ice sheet at the South Pole, allows researchers to see the byproducts of neutrino interactions with the ... » read more

← Older posts