Revolutionizing IC Packaging With High-Density RDL Technology


The demand for high-performance devices, particularly in AI, HPC, and data centers, has surged dramatically in the ever-evolving landscape of integrated circuit technology. This demand has been further accelerated by the COVID-19 pandemic, pushing the boundaries of silicon technology to its limits. Enter Amkor’s S-SWIFT, a packaging solution designed to address these challenges and revolution... » read more

Current Characterization Of Various Cu RDL Designs In Wafer Level Packages (WLP)


Copper (Cu) redistribution layer (RDL) technology is used to interconnect chips in various high current Wafer Level Packaging (WLP) applications. Typically, Cu RDLs with thicknesses of 5-9 µm and widths of 5-20 µm are used for high current sourcing. In this case, the temperature of the Cu RDL metal line increases due to the Joule heat generated when current passes through the metal line. If a... » read more

Overlay Optimization In Advanced IC Substrates


Overlay is becoming a significant problem in the manufacturing of semiconductors, especially in the world of advanced packaging substrates — think panels — the larger the area, the greater the potential for distortion due to warpage. Solving this issue requires more accurate models, better communication through feed forward/feed back throughout the flow, and real-time analytics that are bak... » read more

Electromigration Concerns Grow In Advanced Packages


The incessant demand for more speed in chips requires forcing more energy through ever-smaller devices, increasing current density and threatening long-term chip reliability. While this problem is well understood, it's becoming more difficult to contain in leading-edge designs. Of particular concern is electromigration, which is becoming more troublesome in advanced packages with multiple ch... » read more

Yield Tracking In RDL


Yield is a much bigger issue when it comes to panel-level packages, which may contain up to 24 RDL layers. Just finding the defects is a massive challenge, let alone understanding how they will impact the entire device. Many of these advanced packages are being used in data centers for generative AI, and killer defects caused by bridges and opens can cause serious problems. What happens, for in... » read more

Fan-Out Panel-Level Packaging Hurdles


Fan-out panel-level packaging (FOPLP) promises to significantly lower assembly costs over fan-out wafer-level packaging, providing the relevant processes for die placement, molding and redistribution layers (RDLs) formation can be scaled up with equivalent yield. There is still much work to be done before that happens. Until now, FOPLP has been adopted for devices that are manufactured in ve... » read more

Electromigration Performance Of Fine-Line Cu Redistribution Layer (RDL) For HDFO Packaging


The downsizing trend of devices gives rise to continuous demands of increasing input/output (I/O) and circuit density, and these needs encourage the development of a High-Density Fan-Out (HDFO) package with fine copper (Cu) redistribution layer (RDL). For mobile and networking application with high performance, HDFO is an emerging solution because aggressive design rules can be applied to HDFO ... » read more

Many More Hurdles In Heterogeneous Integration


Advanced packaging options continue to stack up in the pursuit of “More than Moore” and higher levels of integration. It has become a place where many high-density interconnects converge, and where many new and familiar problems need to be addressed. The industry’s first foray into fine-pitch multi-die packaging utilized silicon interposers with through-silicon vias (TSVs) to deliver s... » read more

Total Overlay With Multiple RDLs


As Advanced IC Substrates (AICS) add more RDL layers, requiring additional via connections between the RDL layers, the potential for cumulative overlay shift increases. This overlay shift can lead to longer RDL traces, which increases interconnect resistance, resulting in lower yield. Keith Best, director of product marketing, for lithography at Onto Innovation, talks about total overlay — th... » read more

The Glass Substrate Question: When Will It Replace Copper Clad Laminate?


"When will glass replace copper clad laminate on advanced IC substrates?" That’s a question many on the heterogeneous integration (HI) side of the semiconductor industry are asking. Unfortunately, the answer is not straightforward. But before we get to answering that, let’s take an advanced IC substrate (AICS) refresher. In other words, how did we get to the point where glass substrat... » read more

← Older posts