IC Manufacturing Targets Less Water, Less Waste


Fabs, OSATs, and equipment makers are accelerating their efforts to consume less water while recycling more material waste in a trend toward better sustainability. With chips, sustainability is heavily focused on carbon emissions, and energy consumption is a significant contributor. But there is an equal effort underway to reduce water consumption and pollution. Across the globe, the number ... » read more

Managing Water Supplies With Machine Learning


From wet benches to cooling systems, fabs use vast amounts of water — millions of gallons per day at a typical foundry. In this era of climate change, though, water supplies are becoming less reliable and municipal water systems are becoming more restrictive. For example, local utilities might restrict a fab’s ability to draw from the public water supply, or might supply only treated wastew... » read more

Research Bits: Dec. 13


Electronic-photonic interface for data centers Engineers at Caltech and the University of Southampton integrated an electronic and photonic chip for high-speed communication in data centers. "There are more than 2,700 data centers in the U.S. and more than 8,000 worldwide, with towers of servers stacked on top of each other to manage the load of thousands of terabytes of data going in and o... » read more

Power/Performance Bits: Feb. 2


MXene antennas Researchers at Drexel University and Villanova University developed spray-on antennas made of the 2D materials MXene that is flexible and light while maintaining good signal. "This combination of communications performance with extreme thinness, flexibility and durability sets a new standard for antenna technology," said Yury Gogotsi, professor of Materials Science and Engine... » read more

Power/Performance Bits: Nov. 3


Wirelessly charging multiple devices Researchers from ITMO University developed a metamaterial that can be used to turn surfaces into wireless charging areas for multiple devices from different manufacturers with different power transfer standards. "There are various wireless power transfer standards with different frequencies, so you can't just use a charger by any manufacturer," said Poli... » read more

Power/Performance Bits: Oct. 27


Room-temp superconductivity Researchers at the University of Rochester, University of Nevada Las Vegas, and Intel created a material with superconducting properties at room temperature, the first time this has been observed. The researchers combined hydrogen with carbon and sulfur to photochemically synthesize simple organic-derived carbonaceous sulfur hydride in a diamond anvil cell, which... » read more

Power/Performance Bits: Oct. 6


Waste plastic supercapacitor Researchers from the University of California Riverside found a way to recycle waste plastic into energy storage devices. The work focused on polyethylene terephthalate plastic waste, or PET, which is found in soda bottles and many other consumer products. The researchers first dissolved pieces of PET plastic bottles in a solvent. Using electrospinning, they fab... » read more

Power/Performance Bits: Nov. 11


Smaller DACs and ADCs Researchers at the National University of Singapore invented a novel class of Digital-to-Analog (DAC) and Analog-to-Digital Converters (ADC) that use a fully-digital architecture. This digital architecture means design time for sensor interfaces can be reduced from months to hours with a fully-automated digital design methodology, the team said. It also has the benefit... » read more

Power/Performance Bits: Aug. 20


Six-angstrom waveguide Engineers at the University of California San Diego, City University of New York, and Johns Hopkins University created the thinnest optical waveguide yet. At only three atoms thick, the team says the waveguide serves as a proof of concept for scaling down optical devices. The waveguide consists of a tungsten disulfide monolayer (made up of one layer of tungsten atoms ... » read more

Power/Performance Bits: April 30


Printed supercapacitors Researchers at Drexel University and Trinity College created ink for an inkjet printer from MXene, a highly conductive two-dimensional material, which could be used to print flexible energy storage components, such as supercapacitors, in any size or shape. The material shows promise as an ink thanks to its high conductivity and ability to apply easily to surfaces usi... » read more

← Older posts