System Bits: Oct. 24


Optical communication on silicon chips With the huge increase in computing performance in recent decades achieved by squeezing ever more transistors into a tighter space on microchips, at the same time this downsizing has also meant packing the wiring within microprocessors ever more tightly together. This has led to effects such as signal leakage between components, which can slow down commun... » read more

Power/Performance Bits: Oct. 10


Asphalt anode Scientists at Rice University developed an anode for lithium metal batteries enabling them to charge 10 to 20 times faster than commercial lithium-ion batteries. The anodes are a porous carbon made from asphalt mixed with conductive graphene nanoribbons and coated with composite with lithium metal through electrochemical deposition. The lab combined the anode with a sulfurized... » read more

Power/Performance Bits: Oct. 3


Slowing down photonics Researchers at the University of Sydney developed a chip capable of optical data into sound waves, slowing data transfer enough to process the information. While speed is a major bonus with photonic systems, it's not as advantageous when processing data. By turning optical signals into acoustic, data can be briefly stored and managed inside the chip for processing, re... » read more

System Bits: Aug. 29


Could video goggles, and a tiny implant cure blindness? Incredibly, the world of medical research is on the verge of curing blindness. Similar to cochlear implants for deaf people, Stanford University scientists and engineers are developing new devices to this end, including a bionic vision system based on photovoltaic implants, which is awaiting approval for human clinical trials in Europe. A... » read more

Power/Performance Bits: Aug. 22


USB data leakage Researchers from the University of Adelaide found that USB connections are vulnerable to information leakage. In testing more than 50 different computers and external USB hubs, they found that over 90% of them leaked information to an external USB device. "USB-connected devices include keyboards, cardswipers and fingerprint readers which often send sensitive information to ... » read more

Manufacturing Bits: July 18


Brain microscopes Rice University is developing a tiny and flat microscope for a special application--it will be able to decode and trigger neurons on the surface of the brain. The microscope technology, dubbed FlatScope, is part of a $65 million program announced by the U.S.-based Defense Advanced Research Projects Agency (DARPA). The DARPA project, dubbed Neural Engineering System Design ... » read more

Power/Performance Bits: June 20


Batteries from scrap metal Scientists at the Chinese Academy of Sciences and Jilin University found a method to transform rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries. The rust is converted directly into a compact layer with a grid structure that can store potassium ions. A coating of reduced graphite... » read more

System Bits: June 6


Silicon nanosheet-based builds 5nm transistor To enable the manufacturing of 5nm chips, IBM, GLOBALFOUNDRIES, Samsung, and equipment suppliers have developed what they say is an industry-first process to build 5nm silicon nanosheet transistors. This development comes less than two years since developing a 7nm test node chip with 20 billion transistors. Now, they’ve paved the way for 30 billi... » read more

Power/Performance Bits: May 30


Flexible nanogenerator acts as loudspeaker, microphone Engineers at Michigan State University developed a paper-thin, flexible ferroelectret nanogenerator, or FENG, that can both generate energy from human motion and act as a loudspeaker and microphone. "This is the first transducer that is ultrathin, flexible, scalable and bidirectional, meaning it can convert mechanical energy to electr... » read more

System Bits: May 23


Next-era transistors engage diamonds To advance the development of more robust and energy-efficient electronics, materials scientists from Japan’s National Institute for Materials Sciences have developed a new diamond transistor fabrication process. To address the challenges of silicon, Jiangwei Liu and the team have recently described new work developing diamond-based transistors. “Sil... » read more

← Older posts Newer posts →