Node Within A Node


Enough margin exists in manufacturing processes to carve out the equivalent of a full node of scaling, but shrinking that margin will require a collective push across the entire semiconductor manufacturing supply chain. Margin is built into manufacturing at various stages to ensure that chips are manufacturable and yield sufficiently. It can include everything from variation in how lines are... » read more

Using Technology To Improve Beer And Wine


For those people who enjoy a glass of Cabernet, Sauvignon Blanc, or Pilsner, you know that the temperature of that beverage is key to its enjoyment. Serve a red wine too chilled, and it ruins the flavor. And let’s not even get into the flavor of a warm lager. If you’re curious about how temperature affects the flavor of wine, check out this short and entertaining video from Wine Folly. Ask... » read more

System Bits: June 25


Supercomputers around the world At last week’s International Supercomputing Conference in Frankfurt, Germany, the 53rd biannual list of the Top500 of the most powerful computing systems in the world was released. Broken out by countries of installation, China has 219 of the world’s 500 fastest supercomputers, compared with 116 in the United States. Ranking by percent of list flops, the ... » read more

Advanced Process Control


David Fried, vice president of computational products at Lam Research, looks at shrinking tolerances at advanced processes, how that affects variation in semiconductor manufacturing, and what can be done to achieve the benefits of scaling without moving to new transistor architectures. » read more

Unlocking Accurate Chemical Sensing on the Go


Air pollution is one of the grand challenges facing the entire planet — from the wealthiest nations to the least developed. The World Health Organization reports that nine out of 10 people breathe air containing high levels of pollutants, and that polluted air takes over seven million lives annually through stroke, heart disease and respiratory ailments. As a result, the world is thirsty... » read more

System Bits: June 10


SlothBot swings through the trees, slowly A robot that doesn’t often move, spending its days, weeks, months, in the forest canopy, monitoring the local environment – that’s SlothBot, from the Georgia Institute of Technology. The robot has two photovoltaic solar panels for its power source. It is designed to stay in the trees for months at a time. It’s gone through trials on the Geor... » read more

Power/Performance Bits: June 4


Flexible high-temp dielectric Researchers at Rice University, Georgia Institute of Technology, and Cornell University developed a new high-temperature dielectric nanocomposite for flexible electronics, energy storage, and electric devices that combines one-dimensional polymer nanofibers and two-dimensional boron nitride nanosheets. The polymer nanofibers act as a structural reinforcement, w... » read more

Week in Review: IoT, Security, Auto


Internet of Things Paris-based Parrot Drones and five other companies were selected by the Pentagon’s Defense Innovation Unit and the U.S. Army to adapt off-the-shelf commercial drones for combat applications as part of the Army’s Short Range Reconnaissance program. SRR seeks to develop unmanned aerial vehicles that have a flight time of 30 minutes, a range of three kilometers (nearly two ... » read more

Make Your Own Energy


Regenerative braking and other forms of energy capture are becoming more popular and increasingly effective. What started as a way of increasing the range of electric or hybrid vehicles is now being applied to everything from green buildings to industrial robots. The automotive industry is still the main driver of this technology. The idea that braking can generate energy has been around for... » read more

Three Tools Help Put Safe Vehicles On The Road


By Richard Pugh and Gabriele Pulini As the ultimate systems-of-systems, automated vehicles present an enormous verification task, requiring verification of complex sensing, computing, and actuating functions. This can be accomplished only by virtualizing the entire system: the vehicle and the environment it moves through. It also requires a combination of realistic scenario modeling, hard... » read more

← Older posts Newer posts →