Die-To-Die Connectivity


Manmeet Walia, senior product marketing manager at Synopsys, talks with Semiconductor Engineering about how die-to-die communication is changing as Moore’s Law slows down, new use cases such as high-performance computing, AI SoCs, optical modules, and where the tradeoffs are for different applications.   Interested in more Semiconductor Engineering videos? Sign-up for our YouTu... » read more

Power/Performance Bits: Nov. 19


Quantum communications chip Researchers at Nanyang Technological University, Australian National University, A∗STAR, University of Science and Technology of China, Singapore University of Technology and Design, Sun Yat-sen University, Beijing University of Posts and Telecommunications, and National University of Singapore built an integrated silicon photonic chip capable of performing quantu... » read more

Effects Of A Random Process Variation On The Transfer Characteristics Of A Fundamental Photonic Integrated Circuit Component


Silicon photonics is rapidly emerging as a promising technology to enable higher bandwidth, lower energy, and lower latency communication and information processing, and other applications. In silicon photonics, existing CMOS manufacturing infrastructure and techniques are leveraged. However, a key challenge for silicon photonics is the lack of mature models that take into account known CMOS pr... » read more

The Race For Better Computational Software


Anirudh Devgan, president of Cadence, sat down with Semiconductor Engineering to talk about computational software, why it's so critical at the edge and in AI systems, and where the big changes are across the semiconductor industry. What follows are excerpts of that conversation. SE: There is no consistent approach to how data will be processed at the edge, in part because there is no consis... » read more

Low-Power Design Becomes Even More Complex


Throughout the SoC design flow, there has been a tremendous amount of research done to ease the pain of managing a long list of power-related issues. And while headway has been made, the addition of new application areas such as AI/ML/DL, automotive and IoT has raised as many new problems as have been solved. The challenges are particularly acute at leading-edge nodes where devices are power... » read more

Silicon Photonics Begins To Make Inroads


Integrating photons and electrons on the same die is still a long way off, but advances in packaging and improvements in silicon photonics are making it possible to use optical communication for a variety of new applications. Utilizing light-based communication between chips, or in self-contained modules, ultimately could have a big impact on chip design. Photons moving through waveguides ar... » read more

Sidestepping Moore’s Law


Calvin Cheung, vice president of engineering at ASE, sat down with Semiconductor Engineering to talk about advanced packaging, the challenges involved with the technology, and the implications for Moore’s Law. What follows are excerpts of that conversation. SE: What are some of the big issues with IC packaging today? Cheung: Moore’s Law is slowing down, but transistor scaling will co... » read more

Choosing the Right Photonic Design Software


There are many factors to consider before deciding which photonic design software to use. To narrow the field, it can be helpful to ask these key questions as you investigate and compare software functionality. • Does the software provide enough flexibility to model and analyze products that offer the best solution to likely and possible design goals? • Is the simulation capable of pr... » read more

Moore’s Law Now Requires Advanced Packaging


Semiconductor Engineering sat down to discuss advanced packaging with Calvin Cheung, vice president of engineering at ASE; Walter Ng, vice president of business management at UMC; Ajay Lalwani, vice president of global manufacturing operations at eSilicon; Vic Kulkarni, vice president and chief strategist in the office of the CTO at ANSYS; and Tien Shiah, senior manager for memory at Samsung. W... » read more

A Different Kind Of Material World


The semiconductor manufacturing world is poised for big change, and the driver will be materials. Materials always have been a critical factor in semiconductors. Silicon is so important that an entire region of California is named after it. Rare earths have raised fears about nationalistic monopolies. And the shift from aluminum to copper interconnects at 130nm caused one of the most painful... » read more

← Older posts