Three Common SoC Power Management Myths


SoCs are power-sensitive. Sometimes SoCs are sensitive because designers worry about the impact they have on the end product battery life. Sometimes designers worry about the effects of dissipating too much power on packaging and thermal issues. Sometimes designers are simply worried about the massive cooling budgets of data centers generating heat from thousands of their chips running in serve... » read more

The Week In Review: Design/IoT


Standards The IEEE launched the International Roadmap for Devices and Systems (IRDS), effectively setting the industry agenda for future silicon benchmarking and adding metrics that are relevant to specific markets rather than creating the fastest general-purpose processing elements at the smallest process node. For more on the IRDS, check out Ed Sperling's analysis. Accellera's SystemC A... » read more

Rightsizing Challenges Grow


Rightsizing chip architectures is getting much more complicated. There are more options to choose from, more potential bottlenecks, and many more choices about what process to use at what process node and for which markets and price points. Rightsizing is a way of targeting chips to specific application needs, supplying sufficient performance while minimizing power and cost. It has been a to... » read more

Convolutional Neural Networks Power Ahead


While the term may not be immediately recognizable, convolutional neural networks (CNNs) are already part of our daily lives—and they are expected to become even more significant in the near future. [getkc id="261" kc_name="Convolutional neural networks"] are a form of machine learning modeled on the way the brain's visual cortex distinguishes one object from another. That helps explain wh... » read more

Power Management Heats Up


Power management has been talked about a lot recently, especially when it comes to mobile devices. But power is only a part of the issue—and perhaps not even the most important part. Heat is the ultimate limiter. If you cannot comfortably place the device on your face or wrist, then you will not have a successful product. Controlling heat, at the micro and macro levels, is an important asp... » read more

Analyzing The Integrity Of Power


Power analysis is shifting much earlier in the chip design process, with power emerging as the top design constraint at advanced process nodes. As engineering teams pack more functionality and content into bigger and more complex chips, they are having to deal with more complex interactions that affect everything from power to its impact on signal integrity and long-term reliability. That, i... » read more

Bridging The IP Divide


The adoption of an IP-based model has enabled designs to keep filling the available chip area while allowing design time to shrink. But there is a divide between IP providers and IP users. It is an implicit fuzzy contract about how the IP should be used, what capabilities it provides, and the extent of the verification that has been performed. IP vendors have been trying to formalize this as mu... » read more

What Cognitive Computing Means For Chip Design


Cognitive computing. Artificial intelligence. Machine learning. All of these are concepts aim to make human types of problems computable, whether it be a self-driving car, a health care-providing robot, or a walking and talking assistant robot for the home or office. R&D teams around the world are working to create a whole new world of machines more intelligent than humans. Designing sys... » read more

Coherency, Cache And Configurability


Coherency is gaining traction across a wide spectrum of applications as systems vendors begin leveraging heterogeneous computing to improve performance, minimize power, and simplify software development. Coherency is not a new concept, but making it easier to apply has always been a challenge. This is why it has largely been relegated to CPUs with identical processor cores. But the approach ... » read more

How Many Cores? (Part 2)


New chip architectures and new packaging options—including fan-outs and 2.5D—are changing basic design considerations for how many cores are needed, what they are used for, and how to solve some increasingly troublesome bottlenecks. As reported in part one, just adding more cores doesn't necessarily improve performance, and adding the wrong size or kinds of cores wastes power. That has s... » read more

← Older posts Newer posts →