System Bits: Dec. 15


Building chips skyscraper style With the aim of boosting electronic performance by factor of a thousand, a team of researchers led by Stanford University engineers have created a skyscraper-like chip design, based on materials more advanced than silicon. For many years, computer systems have been designed with processors and memory chips laid out like single-story structures in a suburb whe... » read more

System Bits: Dec. 1


Extracting the right information in large data sets When solving complex scientific problems, researchers sometimes encounter what is called the curse of dimensionality, that is, they have so much data that they cannot efficiently analyze it. Large data sets can also be expensive and time consuming to acquire, so it is critical to gather only what is necessary. To this end, University of Il... » read more

Power/Performance Bits: Dec. 1


Hiding wires from the sun There's a problem with most solar cells: the electricity-carrying metal wire grid on top prevents sunlight from reaching the semiconductor below. A team from Stanford University tackled this problem, discovering a way to hide the reflective upper contact and funnel light directly to the semiconductor below. For the study, the researchers placed a 16-nanometer-thi... » read more

System Bits: Aug. 11


Fundamental physics discovery The study of correlated electrons — a branch of fundamental physics research — focuses on interactions between the electrons in metals, which now are understood a bit better, according to Caltech researchers. Understanding these interactions and the unique properties they produce could lead to the development of novel materials and technologies, but they mu... » read more

System Bits: June 16


Origami robot At the recent International Conference on Robotics and Automation, MIT researchers presented a printable origami robot that folds itself up from a flat sheet of plastic when heated and measures about a centimeter from front to back. The robot weighs just a third of a gram, and can swim, climb an incline, traverse rough terrain, and carry a load twice its weight. Other than the... » read more

System Bits: June 9


Optical constraints Stanford University researchers have discovered strong constraints to optical data transmission but hope it can guide future research in this area. As a reminder, optics, a form of data transmission that utilizes beams of light, has the promise to outperform the beams of electrons that drive computers or smartphones. And as engineers have long looked for a way to miniatu... » read more

Power/Performance Bits: June 9


Building foam batteries out of trees A method for making elastic high-capacity batteries from wood pulp was unveiled by researchers in Sweden and the US. Using nanocellulose broken down from tree fibers, a team from KTH Royal Institute of Technology and Stanford University produced an elastic, foam-like battery material that can withstand shock and stress. "It is possible to make incredib... » read more

DAC 2015: Day One


It requires a certain dedication to attend technical DAC sessions on a Sunday morning, but full day workshops start before 9:00am for those dedicated to hearing about the latest work being conducted in academia and the research arm of industry. These are highly technical sessions that target academics and those serious about keeping a pulse on up and coming technologies. One such workshop wa... » read more

System Bits: June 2


Subcutaneous medicine chip A biosensor chip developed at EPFL is capable of simultaneously monitoring the concentration of a number of molecules, such as glucose and cholesterol, and certain drugs. It’s only a centimeter long, placed under a patient’s skin, powered by a patch on the surface of the skin, and communicates with a mobile phone. [caption id="attachment_20134" align="alig... » read more

Brain-Inspired Computing


Approaching power/performance tradeoffs from an architectural perspective is essential given the complexities of today’s SoCs. And beyond some traditional techniques that I discussed in a recent article, Bernard Murphy, CTO at Atrenta mentioned that there is currently a lot of buzz about using non-Von Neumann architectures — especially for recognition functions (voice, image and text). ... » read more

← Older posts Newer posts →