Packetized Scan Test


Bus-based packetized scan data decouples test delivery and core-level DFT requirements so core-level compression configuration can be defined completely independently of chip I/O limitations. Grouping cores for concurrent testing is selected programmatically, not hard-wired. This concept dramatically reduces the DFT planning and implementation effort. The Siemens solution for packetized deli... » read more

Testing The Stack: DFT Is Ready For 3D Devices


When existing advanced 2D designs already push the limits of design-for-test (DFT) tools, what hope do developers have of managing DFT for 3D devices? Can anyone afford the tool run time, on-chip area demand, pattern count, and test time? The answer, from an array of experts, is yes, there is a path to a scalable, affordable, and comprehensive DFT solution for 3D ICs. Well-covered strategies... » read more

Success Stories For Packetized Scan Data


Some new design-for-test (DFT) technologies are difficult, expensive, or risky to implement but offer significant benefits. Other technologies are easy to implement but offer minor improvements. The calculation of whether (or when) to adopt new technology includes consideration of the pressures of DFT today—design complexity, the lack of flexibility in hardwiring scan channels, the proliferat... » read more

The Era Of Packetized Scan Test Has Arrived


For decades, process and design scaling has triggered the adoption of transformative test solutions. About twenty years ago, when at-speed test became a de-facto requirement, on-chip compression became the norm to address test data time and volume. Over the last decade, hierarchical DFT enabled DFT engineers to apply a divide and conquer on large design, improving both implementation effort and... » read more

Streaming Scan Network


The traditional approach to moving scan test data from chip-level pins to core-level scan channels is under pressure due to the dramatic rise in design size, design complexity, and test adaptation. In the traditional approach to delivering scan test data to cores, each core requires a dedicated connection to chip-level pins, which doesn’t allow for much flexibility, as the dependencies betwee... » read more

Packetized Scan Test Delivery


The traditional approach to moving scan test data from chip-level pins to core-level scan channels is under pressure due to the dramatic rise in design size, design complexity, and test adaptation. To address these challenges, we now have the option of implementing a packetized data network for scan test that moves the scan data through the SoC much more efficiently than the traditional pin-... » read more

Have It All With No-Compromise DFT


The dramatic rise in manufacturing test time for today’s large and complex SoCs is rooted in the use of traditional approaches to moving scan test data from chip-level pins to core-level scan channels. The pin-multiplexing (mux) approach works fine for smaller designs but can become problematic with an increase in the number of cores and the design complexity on today’s SoCs. The next revol... » read more