How Die Dimensions Challenge Assembly Processes


Multi-die assemblies are becoming more common and more complex due to technology advancements and market demands, but differing die dimensions are making this process increasingly challenging. To fully enable a multi-chiplet ecosystem, standardized component handling and interfaces are needed. The underlying concept is similar to LEGO blocks that simply snap together, yet it's nowhere near t... » read more

Navigating Heat In Advanced Packaging


The integration of multiple heterogeneous dies in a package is pivotal for extending Moore’s Law and enhancing performance, power efficiency, and functionality, but it also is raising significant issues over how to manage the thermal load. Advanced packaging provides a way to pack more features and functions into a device, increasingly by stacking various components vertically rather than ... » read more

Hot Trends In Semiconductor Thermal Management


Increasing thermal challenges, as the industry moves into 3D packaging and continues to scale digital logic, are pushing the limits of R&D. The basic physics of having too much heat trapped in too small a space is leading to tangible problems, like consumer products that are too hot to hold. Far worse, however, is the loss of power and reliability, as overheated DRAM has to continually r... » read more

Keeping IC Packages Cool


Placing multiple chips into a package side-by-side can alleviate thermal issues, but as companies dive further into die stacking and denser packaging to boost performance and reduce power, they are wrestling with a whole new set of heat-related issues. The shift to advanced packaging enables chipmakers to meet demands for increasing bandwidth, clock speeds, and power density for high perform... » read more

Thermal Management Implications For Heterogeneous Integrated Packaging


As the semiconductor industry reaches lower process nodes, silicon designers struggle to have Moore's Law produce the results achieved in earlier generations. Increasing the die size in a monolithic system on chip (SoC) designs is no longer economically viable. The breakdown of monolithic SoCs into specialized chips, referred to as chiplets, presents significant benefits in terms of cost, yield... » read more

Thermal Interface Materials: The Unknown Entity?


Thermal interface materials (TIMs) are becoming more important in all application areas and between different component parts. Any semiconductor, ranging from LEDs to high-power electronics, is becoming smaller, yet producing more power. In many ways the physical design limits have been reached for packaging, allowing entire components to have a total thermal resistance of less than 0.1 K/W. Ho... » read more