Research Bits: Aug. 5


Measuring temperature with neutrons Researchers from Osaka University, National Institutes for Quantum Science and Technology, Hokkaido University, Japan Atomic Energy Agency, and Tokamak Energy developed a way to rapidly measure the temperature of electronic components inside a device using neutrons. The technique, called ‘neutron resonance absorption’ (NRA), examines neutrons being ab... » read more

Ensure Reliability In Automotive ICs By Reducing Thermal Effects


In the relentless pursuit of performance and miniaturization, the semiconductor industry has increasingly turned to 3D integrated circuits (3D-ICs) as a cutting-edge solution. Stacking dies in a 3D assembly offers numerous benefits, including enhanced performance, reduced power consumption, and more efficient use of space. However, this advanced technology also introduces significant thermal di... » read more

Floor-Planning Evolves Into The Chiplet Era


3D-ICs and heterogeneous chiplets will require significant changes in physical layout tools, where the placement of chiplets and routing of signals can have a big impact on overall system performance and reliability. EDA vendors are well aware of the issues and working on solutions. Top on the list of challenges for 3D-ICs is thermal dissipation. Logic typically generates the most heat, and ... » read more

Data Center Thermal Management Improves


Thermal issues are plaguing semiconductor design at every level, from chips developed with single-digit nanometer processes to 100,000-square-foot data centers. The underlying cause is too many devices or services that require increasing amounts of power, and too few opportunities for the resulting heat to dissipate. “Everybody wants to try to do more in a small volume of space,” said St... » read more

Thermal Challenges Multiply In Automotive, Embedded Devices


Embedding chips into stacked-die assemblies is creating thermal dissipation challenges that can reduce the reliability and lifespan of these devices, a growing problem as chipmakers begin cramming chiplets into advanced packages with thinner substrates between them. In the past, nearly all of these complex designs were used in tightly controlled environments, such as a large data center, whe... » read more

Temperature: A Growing Concern For Chip Security Experts


While everyone in the semiconductor industry wants to have the hottest new product, having that type of temperature manifest in a literal sense poses a threat not just to product stability and performance but to the security of the chips themselves. Temperature has become an object of fascination to security researchers due to the vagaries of how the physical properties of heat affect perfor... » read more

Liquid Cooling And GaN: A Winning Combination


Data centers are facing an unprecedented transformation due to the surge in generative AI and other emerging technologies. A single ChatGPT session consumes 50 to 100 times more energy than a comparable Google search, escalating data center rack power requirements towards 200 kW or more, presenting serious challenges for operators. Cooling, in fact, takes up about 40% of the power requireme... » read more

The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy


As the industry marches forward in a 3D-IC centric design approach (figure 1), we are facing a new problem. Sometimes referred to as “electro-thermal” or “electro-thermo-mechanical,” it really is the confluence of multiple forms of physics exerting impacts on both the physical manufacture and structure of these multi-die designs and their electrical behavior. Fig. 1: Illustration... » read more

Package Integrated Vapor Chamber Heat Spreaders


With continuous increases in computational demand in nearly all electronics market segments, even historically lower power packaging is being driven into challenging thermal management situations. Node shrink alone is reaching a limit in maintaining track with Moore’s law. The economics and yield challenges of large monolithic system on chip (SoC) designs are driving the development of silico... » read more

3D-IC Intensifies Demand For Multi-Physics Simulation


The introduction of full 3D-ICs will require a simultaneous analysis of various physical effects under different workloads, a step-function change that will add complexity at every step of the design flow, expand and alter job responsibilities, and bring together the analog and digital design worlds in unprecedented ways. 3D-ICs will be the highest-performance advanced packaging option, in s... » read more

← Older posts Newer posts →