System Bits: Oct. 9


Bringing plasmonic color to solid materials Researchers at the University of California, Riverside, used silver nanoparticles (AgNPs) to produce plasmonic color-switchable films for solid materials. This effect was previously achieved only in liquids. Rapid and reversible tuning of plasmonic color in solid films, a challenge until now, holds great promise for a number of applications,” sa... » read more

System Bits: Sept. 3


Microprocessor built with carbon nanotubes Researchers at the Massachusetts Institute of Technology were able to design a microprocessor with carbon nanotubes and fabricate the chip with traditional processes, an advance that could be used in next-generation computers. Work on producing carbon nanotube field-effect transistors has gone on for some time. Fabricated at scale, those CNFETs oft... » read more

System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

System Bits: July 3


CMU prof gets a shot at new supercomputer The National Energy Research Scientific Computing Center will greet its Perlmutter supercomputing system in early 2020. The Cray-designed machine will be capable of 100 million billion floating operations per second. Zachary Ulissi of Carnegie Mellon University will be among the first researchers to use the supercomputer. "When this machine comes on... » read more

System Bits: March 5


The new electronics field of magnonics Transistors keep shrinking to dimensions that are difficult to fabricate. There is doubt in the semiconductor industry about the possibility of producing 1-nanometer features with existing process technology. The answer may lie in magnonic currents: quasi-particles associated with waves of magnetization, or spin waves, in magnetic materials. Researcher... » read more

System Bits: Feb. 26


Firefly microstructures in LED light bulbs Pennsylvania State University researchers wanted to improve the energy efficiency of commercial light-emitting diode light bulbs to save even more energy. They found the answer in the lantern surface of fireflies. "LED lightbulbs play a key role in clean energy," said Stuart (Shizhuo) Yin, professor of electrical engineering at Penn State. "Overall... » read more

Manufacturing Bits: Aug. 9


Faster FEBIDs Focused electron beam induced deposition (FEBID) is generating steam in the industry. Still in the R&D stage, FEBID makes use of an electron beam from a scanning electron microscope. Basically, it decomposes gaseous molecules, which, in turn, deposit materials and structures on a surface at the nanoscale. One of the big applications is a futuristic manufacturing technology... » read more