Research Bits: Jan. 7


Deep UV microLED for maskless lithography Researchers from the Hong Kong University of Science and Technology, Southern University of Science and Technology, and the Suzhou Institute of Nanotechnology developed an aluminum gallium nitride deep-ultraviolet microLED display array for maskless lithography.  They also built a maskless lithography prototype platform. "The team achieved key brea... » read more

Research Bits: Nov. 5


Optical in-memory computing Researchers from the University of Pittsburgh, University of California Santa Barbara, University of Cagliari, and Institute of Science Tokyo propose a resonance-based photonic architecture which leverages the non-reciprocal phase shift in magneto-optical materials to implement photonic in-memory computing. “The materials we use in developing these cells have b... » read more

Research Bits: July 8


2D TFETS for neuromorphic computing Researchers from the University of California Santa Barbara and Intel Labs used 2D transition metal dichalcogenide (TMD)-based tunnel-field-effect transistors (TFETs) in a neuromorphic computing platform, bringing the energy requirements to within two orders of magnitude (about 100 times) the amount used by the human brain. The 2D TFETs have lower off-sta... » read more

Compilation Challenges Of Scaling Up Quantum Computing With Superconducting Chiplet Architecture


A technical paper titled “MECH: Multi-Entry Communication Highway for Superconducting Quantum Chiplets” was published by researchers at University of California San Diego, University of California Santa Barbara, and Cisco Quantum Lab. Abstract: "Chiplet architecture is an emerging architecture for quantum computing that could significantly increase qubit resources with its great scalabili... » read more

Ultra Energy-Efficient HW Platform For Neuromorphic Computing Enabled By 2D-TMD Tunnel-FETs (UC Santa Barbara)


A technical paper titled “An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs” was published by researchers at the University of California Santa Barbara. Abstract: "Brain-like energy-efficient computing has remained elusive for neuromorphic (NM) circuits and hardware platform implementations despite decades of research. In this work we rev... » read more

Research Bits: April 23


Probabilistic computer prototype Researchers at Tohoku University and the University of California Santa Barbara created a prototype of a heterogeneous probabilistic computer that combines a CMOS circuit with a limited number of stochastic nanomagnets. It aims to improve the execution of probabilistic algorithms used to solve problems where uncertainty is inherent or where an exact solution... » read more

Chip Industry’s Technical Paper Roundup: October 9


New technical papers added to Semiconductor Engineering’s library this week. [table id=153 /] More Reading Technical Paper Library home » read more

Noise Parameter Survey Of Millimeter Wave GaN HEMT Technologies


A technical paper titled “A Survey of GaN HEMT Technologies for Millimeter-Wave Low Noise Applications” was published by researchers at Wright-Patterson AFB, Teledyne Scientific, HRL Laboratories, BAE Systems, Pseudolithic, Northrop Grumman Corporation, and University of California Santa Barbara. "This article presents a set of measured benchmarks for the noise and gain performance of si... » read more

Chip Industry’s Technical Paper Roundup: June 27


New technical papers added to Semiconductor Engineering’s library this week. [table id=113 /]   » read more

Power/Performance Bits: Sept. 9


Smaller, cheaper integrated photonics Researchers from the University of California Santa Barbara, California Institute of Technology (Caltech), and Ecole Polytechnique Fédérale de Lausanne (EPFL) developed a way to integrate an optical frequency comb on a silicon photonic chip. Optical frequency combs are collections of equally spaced frequencies of laser light (so called because when pl... » read more

← Older posts