Power/Performance Bits: Sept. 9


Smaller, cheaper integrated photonics Researchers from the University of California Santa Barbara, California Institute of Technology (Caltech), and Ecole Polytechnique Fédérale de Lausanne (EPFL) developed a way to integrate an optical frequency comb on a silicon photonic chip. Optical frequency combs are collections of equally spaced frequencies of laser light (so called because when pl... » read more

Power/Performance Bits: Aug. 25


AI architecture optimization Researchers at Rice University, Stanford University, University of California Santa Barbara, and Texas A&M University proposed two complementary methods for optimizing data-centric processing. The first, called TIMELY, is an architecture developed for “processing-in-memory” (PIM). A promising PIM platform is resistive random access memory, or ReRAM. Whil... » read more

Power/Performance Bits: May 15


Aluminum battery materials Scientists from ETH Zurich and Empa identified two new materials that could boost the development of aluminum batteries, a potential low cost, materially abundant option for temporary storage of renewable energy. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that ... » read more

Manufacturing Bits: April 3


World's brightest accelerator Japan’s High Energy Accelerator Research Organization (KEK) is readying what is considered the world’s most luminous or brightest particle accelerator. The system, dubbed the SuperKEKB, combines an electron-positron collider with a new and advanced detector. The storage ring system is designed to explore and measure rare decays of elementary particles, such... » read more

Power/Performance Bits: June 7


Tiny lasers on silicon A group of scientists from Hong Kong University of Science and Technology, the University of California, Santa Barbara, Sandia National Laboratories, and Harvard University were able to fabricate tiny lasers directly on silicon. To do this, they first had to resolve silicon crystal lattice defects to a point where the cavities were essentially equivalent to those gr... » read more