System Bits: May 6


Transmitting data with a semiconductor laser Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences demonstrated a laser that can emit microwaves wirelessly, modulate them, and receive external radio frequency signals. “The research opens the door to new types of hybrid electronic-photonic devices and is the first step toward ultra-high-speed Wi-Fi,” said ... » read more

Power/Performance Bits: Feb. 11


Body heat harvesting Chemists at the University of Massachusetts Amherst developed a fabric that can harvest body heat to power small wearable electronics such as activity trackers. The device works on the thermoelectric effect created by body temperature and ambient cooler air. "What we have developed is a way to inexpensively vapor-print biocompatible, flexible and lightweight polymer fil... » read more

Manufacturing Bits: Dec. 26


Polymer pen litho Using a polymer pen lithography technique, the Air Force Research Laboratory and Northwestern University have developed a quick way to discover new materials. Researchers have developed a combinatorial library of tiny nanoparticles on a substrate. A combinatorial library, sometimes referred to as a megalibrary, is a collection of different structures. Each structure is enc... » read more

Power/Performance Bits: Dec. 26


2nm memristors Researchers at the University of Massachusetts Amherst and Brookhaven National Laboratory built memristor crossbar arrays with a 2nm feature size and a single-layer density up to 4.5 terabits per square inch. The team says the arrays were built with foundry-compatible fabrication technologies. "This work will lead to high-density memristor arrays with low power consumption fo... » read more

Power/Performance Bits: Dec. 11


Internet of Ears for smart buildings Scientists at Case Western Reserve University proposed a new way for smart homes to determine building occupancy: sensors that 'listen' to vibration, sound, and changes in the existing ambient electrical field. "We are trying to make a building that is able to 'listen' to the humans inside," said Ming-Chun Huang, an assistant professor in electrical engi... » read more

Power/Performance Bits: Dec. 4


Bio-hybrid fungi Researchers at Stevens Institute of Technology combined a white button mushroom, electricity-producing cyanobacteria, and graphene nanoribbons into a power-generating symbiotic system. "In this case, our system - this bionic mushroom - produces electricity," said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. "By integrating cyanobacteria that ca... » read more

Power/Performance Bits: Nov. 20


In-memory compute accelerator Engineers at Princeton University built a programmable chip that features an in-memory computing accelerator. Targeted at deep learning inferencing, the chip aims to reduce the bottleneck between memory and compute in traditional architectures. The team's key to performing compute in memory was using capacitors rather than transistors. The capacitors were paire... » read more

Power/Performance Bits: Jan. 2


Hydrogen from seawater Engineers at Columbia University are developing an ocean-based photovoltaic-powered electrolysis device that can operate as a stand-alone floating platform to split water into hydrogen fuel and oxygen. State-of-the-art electrolyzers use expensive membranes to maintain separation of the H2 and O2 gases produced by water electrolysis. The new device relies instead on an... » read more

Power/Performance Bits: June 6


Magnetoelectric RAM A team of researchers from the Institute of Electronics, Microelectronics and Nanotechnology in Lille, France and the Russian Academy of Sciences in Moscow developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature. Th... » read more

Power/Performance Bits: Jan. 31


Microbial nanowires Microbiologists at the University of Massachusetts Amherst report that they have discovered a new type of microbial nanowire, the protein filaments that bacteria use to make electrical connections with other microbes or minerals. The team was motivated by the potential for improved "green" conducting materials for electronics. According to Derek Lovley, professor of... » read more

← Older posts