How studying particle behavior is leading to methods of suppressing defect-causing nanosized particles in the chipmaking process.
The currently dominant semiconductor process size is in the range between a few and a few dozen nanometers. That means if a nanosized particle smaller than a virus (hereinafter simply “particle”) is present on a silicon substrate, it could cause a defect in the semiconductor device, lowering the production yield (i.e., the percentage of good chips produced in a manufacturing process). Preventing the occurrence of defect-causing particles is not so easy, however, as it is comparable to cleaning up a baseball field until no grain of sand larger than a few dozen microns in diameter remains on the ground. Despite the difficulty, developers of semiconductor production equipment have continually struggled to suppress particles.
Click here to continue reading.
Less precision equals lower power, but standards are required to make this work.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Ensuring that your product contains the best RISC-V processor core is not an easy decision, and current tools are not up to the task.
Wafer manufacturing and GPUs draw investment; 106 companies raise $2.8B.
Heterogenous integration depends on reliable TSVs, microbumps, vias, lines, and hybrid bonds — and time to digest all the options.
How prepared the EDA community is to address upcoming challenges isn’t clear.
Advanced etch holds key to nanosheet FETs; evolutionary path for future nodes.
Details on more than $500B in new investments by nearly 50 companies; what’s behind the expansion frenzy, why now, and challenges ahead.
From specific design team skills, to organizational and economic impacts, the move to bespoke silicon is shaking things up.
Less precision equals lower power, but standards are required to make this work.
New memory approaches and challenges in scaling CMOS point to radical changes — and potentially huge improvements — in semiconductor designs.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Leave a Reply