5G as a wireless power grid

Georgia Tech researchers finds new way to tap into the over-capacity of 5G networks, turning them into “a wireless power grid” for powering IoT devices that today need batteries to operate.



“5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).”

Find the open access technical paper link here and Georgia Tech’s article here. Published Jan 2021.

Eid, A., Hester, J.G.D. & Tentzeris, M.M. 5G as a wireless power grid. Sci Rep 11, 636 (2021). https://doi.org/10.1038/s41598-020-79500-x

Leave a Reply

(Note: This name will be displayed publicly)