Home
TECHNICAL PAPERS

A Micro Light-Emitting Transistor With An N-Channel GaN FET In Series With A GaN LED

popularity

A technical paper titled “Tunnel Junction-Enabled Monolithically Integrated GaN Micro-Light Emitting Transistor” was published by researchers at the Ohio State University and Sandia National Laboratory.

Abstract:

“GaN/InGaN microLEDs are a very promising technology for next generation displays. Switching control transistors and their integration are key components in achieving high-performance, efficient displays. Monolithic integration of microLEDs with GaN switching devices provides an opportunity to control microLED output power with capacitive (voltage) control rather than current controlled schemes. This approach can greatly reduce system complexity for the driver circuit arrays while maintaining device opto-electronic performance. In this work, we demonstrate a 3-terminal GaN micro-light emitting transistor that combines a GaN/InGaN blue tunneling-based microLED with a GaN n-channel FET. The integrated device exhibits excellent gate control, drain current control and optical emission control. This work provides a promising pathway for future monolithic integration of GaN FETs with microLED to enable fast switching high efficiency microLED display and communication systems.”

Find the technical paper here. Published April 2024.

Rahman, Sheikh Ifatur, Mohammad Awwad, Chandan Joishi, Zane-Jamal Eddine, Brendan Gunning, Andrew Armstrong, and Siddharth Rajan. “Tunnel Junction-Enabled Monolithically Integrated GaN Micro-Light Emitting Transistor.” arXiv preprint arXiv:2404.05095 (2024).



Leave a Reply


(Note: This name will be displayed publicly)