Author's Latest Posts


Weighing Wafers Simplifies Metrology


Building semiconductors is an incredibly exacting process, with critical dimensions posing significant equipment challenges—and with the possibility that small process excursions can cause the yield to decrease. For this reason, it has always been important to measure and monitor the most critical process steps to ensure that no further processing is done on a faulty lot and so that equipment... » read more

ALD Tungsten Solves Capacity Challenges in 3D NAND Device Manufacturing


Our increasingly connected and ever “smarter” world generates increasing amounts of data, putting pressure on manufacturers who face new technical challenges in delivering the increasing capacity required for processing and storage. The ALD Tungsten process is helping 3D NAND manufacturers overcome the technical challenges of producing memory chips with higher storage capacity. 3D NAND a... » read more

Much Ado About Memory


New semiconductor applications are ever changing and improving our lives, from new smartphones and wearables to healthcare, factory automation, and artificial intelligence. The humble memory chip working in the background plays a critical role in enabling these technologies. For example, that awesome picture you just took would be lost forever without memory. Your computer can’t perform the i... » read more

Tech Brief: Elements of Electroplating


Electroplating is a common manufacturing process that applies a thin layer of one metal onto another. The U.S. penny, for example, has been made of zinc with a thin, electroplated coating of copper since 1982. Jewelry and flatware are also frequently electroplated to improve visual appearance or provide wear and corrosion resistance. Today, electroplating is widely performed in the electronics ... » read more

Atomic Layer Etching: Rethinking the Art of Etch


Atomic layer etching (ALE) is the most advanced etching technique in production today. In this Perspective, we describe ALE in comparison to long-standing conventional etching techniques, relating it to the underlying principles behind the ancient art of etching. Once considered too slow, we show how leveraging plasma has made ALE a thousand times faster than earlier approaches. While Si is the... » read more

Primer On Packaging


Ever open the body of your smartphone (perhaps unintentionally) and see small, black rectangles stuck on a circuit board? Those black rectangles are packaged chips. The external chip structure protects the fragile integrated circuits inside, as well as dissipates heat, keeps chips isolated from each other, and, importantly, provides connection to the circuit board and other elements. The manufa... » read more

A Look At Atomic Layer Deposition


Imagine being able to deposit a film of material just a few atomic layers at a time. As impossible as that sounds, atomic layer deposition (ALD) is a reality. In fact, it’s being used in an ever-increasing number of applications as an extremely precise and controllable process for creating thin films. Together with its etch counterpart – atomic layer etching (ALE) – ALD is enabling the us... » read more

Overview Of Atomic Layer Etching In The Semiconductor Industry


Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-sca... » read more