Protecting ICs Against Specific Threats


Identifying potential vulnerabilities and attack vectors is a first step in addressing them. Anders Nordstrom, security application engineer at Tortuga Logic, talks with Semiconductor Engineering about the growing risk of remote hardware attacks, what to do when a chip is hacked, and where to find the most common weaknesses for chips. » read more

A Guide To Fast Optimal Solutions To Complex Problems For Quantum Computers


Most people have already heard the term “quantum computer.” There has been a lot of interest in quantum computers over the last few years, with great expectations that they will dramatically change the world soon. These days, we use computers all the time in our daily lives. Personal computers and smartphones are obvious computers, but there are many more computers hidden in plain sight aro... » read more

Bridging IC Design, Manufacturing, And In-Field Reliability


Experts at the Table: Semiconductor Engineering sat down to talk about silicon lifecycle management and how that can potentially glue together design, manufacturing, and devices in the field, with Prashant Goteti, principal engineer at Intel; Rob Aitken, R&D fellow at Arm; Zoe Conroy, principal hardware engineer at Cisco; Subhasish Mitra, professor of electrical engineering and computer sci... » read more

Wafer Level Void-Free Molded Underfill For High-Density Fan-out Packages


In this study, experiments and mold flow simulation results are presented for a void-free wafer level molded underfill (WLMUF) process with High-Density Fan-Out (HDFO) test vehicles using a wafer-level compression molding process. The redistribution layer (RDL)-first technology was applied with 3 layers of a fine-pitch RDL structure. The test samples comprised 11.5 x 12.5-mm2 die with tall copp... » read more

Study Of Bondable Laser Release Material Using 355nm Energy To Facilitate RDL-First And Die-First Fan-Out Wafer-Level Packaging (FOWLP)


A thorough evaluation on selecting a bondable laser release material for redistribution layer (RDL)-first and die-first fan-out wafer-level packaging (FOWLP) is presented in this article. Four laser release materials were identified based on their absorption coefficient at 355 nm. In addition, all four of these materials possess thermal stability above 350 °C and pull-off adhesion on a Ti/Cu l... » read more

Blog Review: May 18


Coventor's Gerold Schropfer considers taking an approach from the early days of computing and using MEMS technology to create computers based on micro-scale electro-mechanical logic and memory for emerging low-energy computing applications such as autonomous sensor nodes and edge computing. Synopsys' Morten Christiansen explains how USB4 differs from USB 3.2, allowing simultaneous host-to-ho... » read more

Improving Atomic Force Microscopy (AFM)


Research paper "Enhancing sensitivity in atomic force microscopy for planar tip-on-chip probes" from Eindhoven University of Technology, Lorraine University and DRF/IRAMIS/SPEC-LEPO, Centre CEA de Saclay. Abstract "We present a new approach to tuning-fork-based atomic force microscopy for utilizing advanced “tip-on-chip” probes with high sensitivity and broad compatibility. Usually, s... » read more

Transforming AI Models For Accelerator Chips


AI is all about speeding up the movement and processing of data. Ali Cheraghi, solution architect at Flex Logix, talks about why floating point data needs to be converted into integer point data, how that impacts power and performance, and how different approaches in quantization play into this formula. » read more

Technical Paper Round-up: May 17


New technical papers added to Semiconductor Engineering’s library this week. [table id=27 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a go... » read more

Research Bits: May 17


Magnetic storage structures Researchers from The Ohio State University and Universidad Nacional Autonoma de Mexico investigated a new material that could potentially increase the capacity of magnetic storage devices. They identified manganese germanide, an unusual magnetic material in which the magnetism follows helices, similar to the structure of DNA. The structure gives rise to a number ... » read more

← Older posts Newer posts →