HECTOR-V: A Heterogeneous CPU Architecture for a Secure RISC-V Execution Environment


Summary "To ensure secure and trustworthy execution of applications, vendors frequently embed trusted execution environments into their systems. Here, applications are protected from adversaries, including a malicious operating system. TEEs are usually built by integrating protection mechanisms directly into the processor or by using dedicated external secure elements. However, both of these... » read more

A graph placement methodology for fast chip design


Abstract "Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research1, chip floorplanning has defied automation, requiring months of intense effort by physical design engineers to produce manufacturable layouts. Here we present a deep reinforcement learning approach to chip floorplanning. In under six hours, our method autom... » read more

High-Voltage, High-Current Electrical Switching Discharge Synthesis of ZnO Nanorods: A New Method toward Rapid and Highly Tunable Synthesis of Oxide Semiconductors in Open Air and Water for Optoelectronic Applications


Abstract: "A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic charac... » read more

Accelerating Inference of Convolutional Neural Networks Using In-memory Computing


Abstract: "In-memory computing (IMC) is a non-von Neumann paradigm that has recently established itself as a promising approach for energy-efficient, high throughput hardware for deep learning applications. One prominent application of IMC is that of performing matrix-vector multiplication in (1) time complexity by mapping the synaptic weights of a neural-network layer to the devices of an ... » read more

Neuromorphic electronics based on copying and pasting the brain


Abstract: "Reverse engineering the brain by mimicking the structure and function of neuronal networks on a silicon integrated circuit was the original goal of neuromorphic engineering, but remains a distant prospect. The focus of neuromorphic engineering has thus been relaxed from rigorous brain mimicry to designs inspired by qualitative features of the brain, including event-driven sign... » read more

Enablers And Barriers For Connecting Diverse Data


More data is being collected at every step of the manufacturing process, raising the possibility of combining data in new ways to solve engineering problems. But this is far from simple, and combining results is not always possible. The semiconductor industry’s thirst for data has created oceans of it from the manufacturing process. In addition, semiconductor designs large and small now ha... » read more

Reversible Chain Diagnosis


For advanced technologies, the industry is seeing very complicated silicon defect types and defect distribution. One consequence is that scan chain diagnosis becomes more difficult. To improve the resolution of scan chain diagnosis, Tessent Diagnosis can use new scan chain test patterns to leverage a reversible scan chain architecture. This paper describes the novel scan chain architecture t... » read more

More Errors, More Correction in Memories


As memory bit cells of any type become smaller, bit error rates increase due to lower margins and process variation. This can be dealt with using error correction to account for and correct bit errors, but as more sophisticated error-correction codes (ECC) are used, it requires more silicon area, which in turn drives up the cost. Given this trend, the looming question is whether the cost of ... » read more

Coping With Parallel Test Site-to-Site Variation


Testing multiple devices in parallel using the same ATE results in reduced test time and lower costs, but it requires engineering finesse to make it so. Minimizing test measurement variation for each device under test (DUT) is a multi-physics problem, and it's one that is becoming more essential to resolve at each new process node and in multi-chip packages. It requires synchronization of el... » read more

Advanced Modeling In FTIR Offers New Applications For HVM


In the leading high-volume manufacturing (HVM) process flows, materials-enabled scaling has increased inline applications for compositional metrology. A previous blog discussed how Fourier transform infrared (FTIR) spectroscopy was used for inline composition measurements. These measurements informed advanced process control for the wafer-level processing of selectively etched 3D NAND wordli... » read more

← Older posts Newer posts →