SiC Demand Growing Faster Than Supply


The silicon carbide (SiC) industry is in the midst of a major expansion campaign, but suppliers are struggling to meet potential demand for SiC power devices and wafers in the market. In just one example of the expansion efforts, Cree plans to invest up to $1 billion to increase its SiC fab and wafer capacities. As part of the plan, Cree is developing the world’s first 200mm (8-inch) SiC f... » read more

Partitioning In 3D


The best way to improve transistor density isn't necessarily to cram more of them onto a single die. Moore’s Law in its original form stated that device density doubles about every two years while cost remains constant. It relied on the observation that the cost of a processed silicon wafer remained constant regardless of the number of devices printed on it, which in turn depended on litho... » read more

New Imaging Tech Finds Buried Defects


By Shinsuke Mizuno and Vadim Kuchik Defects and contamination on the wafer can slow process development times and limit performance and yield. As chips get more complex, more defects can become buried within the increasing number of layers in the design. Finding and analyzing these buried defects is a major challenge for the industry, especially during the early learning cycles of new manufa... » read more

3D NAND Race Faces Huge Tech And Cost Challenges


Amid the ongoing memory downturn, 3D NAND suppliers continue to race each other to the next technology generations with several challenges and a possible shakeout ahead. Micron, Samsung, SK Hynix and the Toshiba-Western Digital duo are developing 3D NAND products at the next nodes on the roadmap, but the status of two others, Intel and China’s Yangtze Memory Technologies Co. (YMTC), is les... » read more

Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

One Micron Damascene Redistribution for Fan-Out Wafer Level Packaging Using a Photosensitive Dielectric Material


Authors: Warren W. Flack, Robert Hsieh, Ha-Ai Nguyen Ultratech, a division of Veeco 3050 Zanker Road, San Jose, CA 95134 USA [email protected] John Slabbekoorn, Samuel Suhard, Andy Miller IMEC Kapeldreef 75 B-3001 Leuven, Belgium [email protected] Akito Hiro, Romain Ridremont JSR MICRO NV Technologielaan 8 B-3001 Leuven, Belgium [email protected] Abstract This... » read more

Blog Review: May 22


Synopsys' Taylor Armerding warns that critical infrastructure is still vulnerable to cyber threats, with Kaspersky finding that 42.7% of the industrial control system computers it protected last year were attacked by malware, email phishing, or other threats. Cadence's Paul McLellan listens in as Jon Masters of Red Hat considers how to tackle speculative execution and branch prediction vulne... » read more

Evolution Of Verification Engineers


Semiconductor Engineering sat down to discuss the implications of having an executable specification that drives verification with Hagai Arbel, chief executive officer for VTool; Adnan Hamid, chief executive office for Breker Verification; Mark Olen, product marketing manager for Mentor, a Siemens Business; Jim Hogan, managing partner of Vista Ventures; Sharon Rosenberg, senior solutions archit... » read more

Manufacturing Bits: May 21


World’s loudest underwater sound A group of researchers hit tiny jets of water with a high-power X-ray laser, creating a record for the world’s loudest underwater sound. The intensity of the blast resulted in an underwater sound with an intensity greater than 270 decibels (dB). That’s greater than the intensity of a rocket launch or equivalent of creating electrical power for a city o... » read more

System Bits: May 21


Washable, wearable energy devices for clothing Researchers at the University of Cambridge collaborated with colleagues at China’s Jiangnan University to develop wearable electronic components that could be woven into fabrics for clothing, suitable for energy conversion, flexible circuits, health-care monitoring, and other applications. Graphene and other materials can be directly incorpor... » read more

← Older posts Newer posts →