Here At Last! Automated Verification Of Heterogeneous 2D/3D Package Connectivity


By Michael Walsh and Jin Hou with Todd Burkholder The heterogeneous integration of multiple ICs in a single package along with high-performance, high-bandwidth memory is critical for many high-performance computing applications. After everything has been heterogeneously integrated and packaged, such designs feature complex connectivity with many hundreds of thousands of connections, making i... » read more

Ensuring Your Power And Ground Nets Are Correctly Connected


In most chip designs, the power and ground nets are likely your largest and most important nets. If any devices are not properly connected, then you cannot expect them to function as expected. Amongst the many problems that can occur to power and ground involves the connections to the well areas of your design that power all the bulk connections to your devices. Well regions connectivity is oft... » read more

The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy


As the industry marches forward in a 3D-IC centric design approach (figure 1), we are facing a new problem. Sometimes referred to as “electro-thermal” or “electro-thermo-mechanical,” it really is the confluence of multiple forms of physics exerting impacts on both the physical manufacture and structure of these multi-die designs and their electrical behavior. Fig. 1: Illustration... » read more

A New Strategy For Successful Block/Chip Design-Stage Verification


Achieving efficiency in integrated circuit (IC) design while maintaining design quality is not just a goal, but a necessity. Designers constantly strive to strike a balance between ever-tightening time-to-market constraints and the finite resources at their disposal, while ensuring the quality of their designs remains uncompromised. Traditionally, IC design flows have been depicted as a linear ... » read more

Maximizing Efficiency And Productivity: The Benefits Of Shift Left Verification For IP Designers


Intellectual property (IP) designers play a crucial role by creating reusable components that form the building blocks of larger integrated circuit (IC) designs. These components, whether developed in-house or acquired from specialized IP design companies, are essential for providing core functionality such as memory and standard libraries. However, designing and verifying IP is a complex and d... » read more

Five Digital Threads Unify And Simplify Electronic Systems Design And Manufacturing


By Matthew Walsh and Matt Bromley Digital transformation involves the integration of digital technologies and the reimagining of business processes to enhance operations, improve customer experiences, and drive innovation. Digital threads are a key component of this transformation, as they enable the seamless flow of data and information across various stages of a process, system, or organiz... » read more

Extending DTCO For Today’s Competitive IC Landscape


As semiconductor components continue to shrink, the challenges associated with design-for-manufacturing (DFM) and design-technology co-optimization (DTCO) increase. The complexity of the IC design and manufacturing process demands an extension of traditional DFM and DTCO techniques to overcome the systematic failures tied to complex design-process interactions. Designers need to accelerate d... » read more

Help, 3D-IC Is Stuck In A Country Song


Every time I focus on three-dimensional (3D) integrated circuit (IC) design, I start hearing the Luke Bryan song “Rain Makes Corn, Corn Makes Whiskey.” Not because I need a strong drink to work with 3D-IC designs, but because there is a similar, although slightly more complicated, series of cause and effect issues that impact 3D-ICs. Pushing electrons through very thin metal wires and switc... » read more

Let’s Do The (IC Design) Time Warp Again


For the most part, we’ve all been doing integrated circuit (IC) and system-on-chip (SoC) layout the same way for decades. Designers put together the design, be it intellectual property (IP), block, or full chip, then begin running physical verification. For design rule checking (DRC), this process consists of running all appropriate rule checks for the component on all available layouts. The ... » read more

A Shift Left Strategy Is One Part Of A Holistic Approach To IC Design Verification


The whole is more than the sum of its parts. –Aristotle A machine is nothing more than a collection of nuts, bolts, wheels, gears, wires, pipes, chains, and what have you. And yet, when they are all connected up properly, magic happens. Instead of a pile of parts, you have a car, or a dishwasher, or a nuclear reactor. The connections and interactions between all those parts turns the whole... » read more

← Older posts