Where Do Memory Maps Come From?


A memory map is the bridge between a system-on-chip (SoC) and the firmware and software that is executed on it. Engineers may assume the map automatically appears, but the reality is much more involved. The union of hardware (HW) and software (SW) demands both planning and compromise. The outcome of this merger will not be fully realized until the magical day when the system comes to life. T... » read more

Verification Signoff Beyond Coverage


A common design view of verification signoff is to start with a comprehensive verification plan, covering every requirement defined among specifications and use-cases, the architectural definition, and any other relevant documents. Tests are then developed to cover every feature of the verification plan. Those tests are run and debugged, and identified issues are addressed within the design. Th... » read more

Traceability, Unfamiliar But Critical


Many understand that traceability is a popular concept. Still, understanding traceability in detail is more challenging, especially in how it connects to familiar objectives in the semiconductor design space. A simple way to understand is this: When a customer (call them C) asks a semiconductor supplier (call them S) to build a device to meet a system objective, they provide S with specificatio... » read more

More NoC Wisdom


A common experience for anyone promoting a disruptive technology is that prospective customers understand that what is being offered is different. Still, without a familiar reference to compare, they extrapolate expectations unreliably. Sometimes expectations are extrapolated to infinity: “My existing solution has limitations, but the new technology should have no limitations.” Sometimes ex... » read more

NoC Experiences From The Trenches


Network-on-chip (NoC) interconnect as an alternative to traditional crossbars is already well-proven, but there are still plenty of design teams on the cusp of a transition or who maybe do not yet see a need for a change. As with a switch to any new technology, the first hurdles are often simply misconceptions. When new users first evaluate any new technology, they often make the mistake of att... » read more

ISO 26262 – Law Or Framework?


The ISO 26262 standard is a weighty series of documents that many believe has all the force of law or regulation; however, it is not a dictate. It is an agreement on best practices for participants in the vehicle value chain to follow to ensure safety as far as the industry understands it today. There is no monetary fine if the standard is not followed, though it will be difficult to sell autom... » read more

IP-XACT Is Back, For All The Right Reasons


The intent behind IP-XACT has always been to provide a bridge between system-on-chip (SoC) assembly and larger considerations. This standard has additionally been used to adapt to multi-sourced and constantly evolving intellectual property (IP) that design and product teams build, often in different companies. Moreover, it was used to interface with product development beyond the specialized ne... » read more

Automotive AI Hardware: A New Breed


Arteris IP functional safety manager Stefano Lorenzini recently presented “Automotive Systems-on-Chip (SoCs) with AI/ML and Functional Safety” at the Linley Processor Conference. A main point of the presentation was that conventional wisdom on AI hardware markets is binary. There’s AI in the cloud: Big, power-hungry, general-purpose. And there’s AI at the edge: Small, low power, limited... » read more

NoCs In Authoritative MPSoC Reference


The MPSoC Forum, sponsored by IEEE and other industry associations, hosts an annual conference in beautiful places around the planet. It is dedicated to showcasing renowned academic and industry experts in multicore and multiprocessor architectures. The goal is to explore trends in system-on-chip (SoC) hardware and software architectures and applications. An additional purpose is to consider th... » read more

SoC Integration Complexity: Size Doesn’t (Always) Matter


It’s common when talking about complexity in systems-on-chip (SoCs) to haul out monster examples: application processors, giant AI chips, and the like. Breaking with that tradition, consider an internet of things (IoT) design, which can still challenge engineers with plenty of complexity in architecture and integration. This complexity springs from two drivers: very low power consumption, eve... » read more

← Older posts Newer posts →