Power/Performance Bits: June 7


Commercializing photonic MEMS Researchers from the University of California Berkeley, Daegu Gyeongbuk Institute of Science & Technology, SUSS MicroOptics, TSI Semiconductors, Gwangju Institute of Science and Technology, KAIST, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Korea Polytechnic University demonstrated a path for commercial fabrication of photonic MEMS. Photonic MEMS... » read more

Manufacturing Bits: June 1


Frozen finFETs The Defense Advanced Research Projects Agency (DARPA) has launched the Low Temperature Logic Technology (LTLT) program, an effort to develop finFETs that operate at temperatures close to liquid nitrogen (~77K or minus 321 degrees Fahrenheit). The goal of LTLT is to develop low-temperature finFET transistors at the 14nm node and below by making modifications to the manufacturi... » read more

Power/Performance Bits: June 1


Stronger PUFs Researchers from Ohio State University and Potomac Research propose a new version of physical unclonable functions, or PUFs, that could be used to create secure ID cards, to track goods in supply chains, and as part of authentication applications. "There's a wealth of information in even the smallest differences found on computers chips that we can exploit to create PUFs," sai... » read more

Manufacturing Bits: May 25


Higher voltage GaN Imec and Aixtron have demonstrated the ability to extend gallium-nitride (GaN) to new voltage levels in the power semiconductor market, enabling the technology to compete in much broader segments. Imec and Aixtron have demonstrated epitaxial growth of GaN buffer layers qualified for 1,200-volt applications on specialized 200mm substrates with a hard breakdown exceeding 1,... » read more

Power/Performance Bits: May 25


5G energy harvesting Researchers at Georgia Institute of Technology propose a way to harvest power for IoT devices using 5G networks. The team's device uses a flexible Rotman lens-based rectifying antenna (rectenna) system capable of millimeter-wave harvesting in the 28-GHz band. “With this innovation, we can have a large antenna, which works at higher frequencies and can receive power fr... » read more

Manufacturing Bits: May 18


Mystery of MXenes Aalto University has studied the surface composition and provided some new insights into MXenes, a promising set of materials used for energy storage and related applications. A class of two-dimensional inorganic compounds, MXenes consist of thin atomic layers. The materials are based on transition metal carbides, nitrides or carbonitrides. These materials have extraord... » read more

Power/Performance Bits: May 18


Efficient high-voltage power conversion Researchers from École Polytechnique Fédérale de Lausanne (EPFL) and Enkris Semiconductor are working to design new power transistors with the aim of improving power converter efficiency. "We see examples of electric power losses every day, such as when the charger of your laptop heats up," said Elison Matioli, head of EPFL's POWERlab, noting that ... » read more

Manufacturing Bits: May 10


Synaptic transistors The University of Hong Kong and Northwestern University have developed an organic electrochemical synaptic transistor, a technology that could one day process and store information like the human brain. Researchers have demonstrated that the transistor can mimic the synapses in the human brain. It can build on memories to learn over time, according to researchers. Th... » read more

Power/Performance Bits: May 10


Probabilistic bit Researchers at Tohoku University are working on building probabilistic computers by developing a spintronics-based probabilistic bit (p-bit). The researchers utilized magnetic tunnel junctions (MTJs). Most commonly used in MRAM technology, where thermal fluctuation typically poses a threat to the stable storage of information, in this case it was a benefit. The p-bits f... » read more

Manufacturing Bits: May 4


Measuring Moon dust The National Institute of Standards and Technology (NIST) and others have developed a new way to study and measure moon dust. Using an X-ray nano computed tomography (XCT) technique, researchers measured the 3D shapes of lunar particles as small as 400nm in length. The goal is to find out how these shapes impact the optical scattering characteristics of lunar dust on the... » read more

← Older posts Newer posts →