Manufacturing Bits: Dec. 3


Microscopic movie star Using a 3D printer and a scanning electron microscope (SEM), a group has created a short animated film featuring the world’s smallest 3D figurine. The stop motion film, called Stardust Odyssey, features a 3D human-like figurine with a height of 300 microns, or close to the size of a grain of dust. This beat the previous record for the smallest figure in a film. N... » read more

Power/Performance Bits: Dec. 3


Waking up IoT devices Researchers at UC San Diego developed an ultra-low power wake-up receiver chip that aims to reduce the power consumption of sensors, wearables, and Internet of Things devices that only need to communicate information periodically. "The problem now is that these devices do not know exactly when to synchronize with the network, so they periodically wake up to do this eve... » read more

Manufacturing Bits: Nov. 25


RF carbon nanotubes For years, the industry has been working on logic and memory devices based on carbon nanotubes, although these technologies remain in R&D. Now, there is a new device type using carbon nanotubes--RF. Startup Carbonics has developed an RF-based carbon nanotube technology that operates at frequencies over 100GHz. The technology exceeds the cutoff frequency of today�... » read more

Power/Performance Bits: Nov. 25


Rigid or flexible in one device Researchers at the Korea Advanced Institute of Science and Technology (KAIST), Electronics and Telecommunications Research Institute (ETRI) in Daejeon, University of Colorado Boulder, Washington University in St. Louis, Cornell University, and Georgia Institute of Technology proposed a system that would allow electronics to transform from stiff devices to flexib... » read more

Manufacturing Bits: Nov. 19


World’s lightest foam Lawrence Livermore National Laboratory (LLNL) has developed what researchers say is the world’s lightest gold foam. LLNL has devised gold aerogel foam. The foam is light enough where it could be carried on the back of tiny insects. Applications for the technology include electronics, catalysis, sensors and energy conversion and storage. An aerogel is based on a ... » read more

Power/Performance Bits: Nov. 19


Quantum communications chip Researchers at Nanyang Technological University, Australian National University, A∗STAR, University of Science and Technology of China, Singapore University of Technology and Design, Sun Yat-sen University, Beijing University of Posts and Telecommunications, and National University of Singapore built an integrated silicon photonic chip capable of performing quantu... » read more

Manufacturing Bits: Nov. 13


Power beams The U.S. Naval Research Laboratory and PowerLight Technologies have demonstrated the ability to transmit energy using a long-range, free-space power beaming system. The system is being developed as part of the Power Transmitted Over Laser (PTROL) project. The system consists of two 13-foot-high towers. One tower consists of 2-kilowatt laser transmitter. The other tower consist o... » read more

Power/Performance Bits: Nov. 11


Smaller DACs and ADCs Researchers at the National University of Singapore invented a novel class of Digital-to-Analog (DAC) and Analog-to-Digital Converters (ADC) that use a fully-digital architecture. This digital architecture means design time for sensor interfaces can be reduced from months to hours with a fully-automated digital design methodology, the team said. It also has the benefit... » read more

Manufacturing Bits: Nov. 5


Nanoliter measurements The National Institute of Standards and Technology (NIST) has developed an optofluidic measurement system that can measure the flow of liquids at the nanoliter scale. Targeted for the field of microfluidics, the system can measure the flow of liquids as small as 10 billionths of a liter per minute. A nanoliter (nL) is one billionth of a liter. A liter is 33.814 ounces... » read more

Power/Performance Bits: Nov. 5


Conductive yarn Researchers at Drexel University created an electrically conductive coating for yarn that withstands wearing, washing, and industrial textile manufacturing. Rather than using metallic fibers, the coating is made up of different sized flakes of the two-dimensional material MXene, which was applied to standard cellulose-based yarns. Titanium carbide MXene can be produced in f... » read more

← Older posts Newer posts →