Manufacturing Bits: April 28


Gate-all-around reliability The 2020 IEEE International Reliability Physics Symposium (IRPS) will kick off this week, this time as a virtual event. IRPS is a conference that focuses on the latest research in microelectronics reliability. The event starts off with keynotes from Infineon, Intel and Texas Instruments. IRPS also involves a multitude of papers and presentations. On the logi... » read more

Power/Performance Bits: April 28


Flat microwave reflector Researchers from Los Alamos National Laboratory developed a new flat reflector for microwaves that could improve communications while providing a better form factor. It also breaks reciprocity, effectively turning it into a one-way mirror. The flat reflector can be reconfigured on the fly electronically, allowing it to be used for beam steering, customized focusing,... » read more

Manufacturing Bits: April 21


Memristors reappear The University of Massachusetts Amherst has taken a step towards of the realization of neuromorphic computing--it has devised bio-voltage memristors based on protein nanowires. In neuromorphic computing, the idea is to bring the memory closer to the processing tasks to speed up a system. For this, the industry is attempting to replicate the brain in silicon. The goal is ... » read more

Power/Performance Bits: April 21


Focus-free lens Researchers from the University of Utah developed a new lens that doesn't require focusing. They present it as an alternative to the multiple lenses common in smartphone cameras. "Our flat lenses can drastically reduce the weight, complexity and cost of cameras and other imaging systems, while increasing their functionality," said research team leader Rajesh Menon from the U... » read more

Manufacturing Bits: April 14


Complex microparticles A team of researchers have developed the world’s most complex microparticle. In the lab, researchers have assembled hierarchically organized particles with twisted spikes and polydisperse Au-Cys (gold-cysteine) nanoplatelets or nanosheets. The sheets all twist in the same direction. Cysteine is a proteinogenic amino acid. The structure is said to be more complex ... » read more

Power/Performance Bits: April 14


Undoped polymer ink Researchers at Linköping University, Chalmers University of Technology, University of Washington, University of Cologne, Chiba University, and Yunnan University developed an organic ink for printable electronics that doesn't need to be doped for good conductivity. "We normally dope our organic polymers to improve their conductivity and the device performance. The proces... » read more

Covid-19 Tech Bits: April 14


Modeling coronavirus spread Four teams of Finnish researchers have modeled the coughing spread of COVID-19 in tight indoor areas, such as grocery stores and public transportation systems, using a supercomputer and 3D visualization. “The aerosol cloud spreads outside the immediate vicinity of the coughing person and dilutes in the process," said Aalto University Assistant Professor Ville V... » read more

COVID-19 Tech Bits


Tech companies, consortiums and universities are jumping in to help fight COVID-19, deploying everything from massive computing capabilities to developing new technologies that can protect medical workers and first responders. Nearly all of these have ramped up over the past several weeks, as the tech world begins to take on a global challenge to combat the deadly virus. Compute resources... » read more

Manufacturing Bits: April 6


Powerful electromagnets The National High Magnetic Field Laboratory (MagLab) has tested a new and powerful superconducting solenoid or electromagnet that operates at high currents. MagLab develops several different types of large and powerful magnets, which are used as scientific instruments. MagLab’s solenoid or electromagnet could one day be used to drive particle accelerators and compa... » read more

Power/Performance Bits: April 6


Durian supercapacitors Researchers from the University of Sydney developed a method that uses durian and jackfruit waste to create supercapacitors. Supercapacitors are capable of quickly storing and discharging energy. The team says their fruit-based material is more efficient than ones typically made from activated carbon. "Using durian and jackfruit purchased from a market, we conver... » read more

← Older posts Newer posts →