Power/Performance Bits: Dec. 28


Shrinking LEDs Researchers from King Abdullah University of Science and Technology (KAUST) are working to make LEDs smaller. Micrometer-scale light-emitting diodes (μLEDs) could be an ideal building block for future microLED displays, but devices based on nitride-based alloys used to achieve a broad color range become poor emitters of light when shrunk to micrometer scales. “The main ... » read more

Power/Performance Bits: Dec. 21


Compact optical amplifier Researchers at Chalmers University of Technology propose a new optical amplifier design that is compact, high-performance, and doesn't generate excess noise. “We have developed the world's first optical amplifier that significantly enhances the range, sensitivity and performance of optical communication, that does not generate any excess noise – and is also com... » read more

Power/Performance Bits: Dec. 14


Improved digital sensing Researchers from Imperial College London and Technical University of Munich propose a technique to improve the capability of many different types of sensors. The method addresses voltage limits in analog-to-digital converters and the saturation that results in poor quality when an incoming signal exceeds those limits. “Our new technique lets us capture a fuller ra... » read more

Power/Performance Bits: Dec. 6


Tunable 2D semiconductors Researchers from the Singapore University of Technology and Design (SUTD), Hengyang Normal University, Nanjing University, National University of Singapore, and Zhejiang University identified a family of 2D semiconductors that could have lower resistance and enable further scaling. “Due to the quantum tunnelling effect, shrinking a silicon-based transistor too sm... » read more

Power/Performance Bits: Nov. 30


Universal decoding algorithm Researchers at MIT, Boston University, and Maynooth University built a silicon chip that is able to decode any error-correcting code, regardless of its structure, with maximum accuracy, using a universal decoding algorithm called Guessing Random Additive Noise Decoding (GRAND). Encoded data traveling over a network is susceptible to noise, which disrupts the sig... » read more

Power/Performance Bits: Nov. 24


Flexible, low power phase-change memory Engineers at Stanford University created a flexible phase-change memory. The non-volatile phase-change memory device is made up of germanium, antimony, and tellurium (GST) between two metal electrodes. 1s and 0s represent measurements of electrical resistance in the GST material. “A typical phase-change memory device can store two states of resis... » read more

Power/Performance Bits: Nov. 16


Light-emitting memory Researchers from Kyushu University and National Taiwan Normal University propose a 'light-emitting memory' based on a perovskite that can simultaneously store and visually transmit data. The team used the idea in conjunction with resistive RAM (RRAM), in which states of high and low resistance represent ones and zeros. "The electrical measurements needed to check the r... » read more

Power/Performance Bits: Nov. 8


Molecular memristor Researchers from National University of Singapore, Indian Association for the Cultivation of Science, University of Limerick, Texas A&M University, and Hewlett Packard Enterprise discovered a molecular memristor for brain-inspired computing. The molecule uses natural asymmetry in its metal-organic bonds to switch between different states, which allows it to perform u... » read more

Power/Performance Bits: Nov. 2


GaN CMOS ICs Researchers from the Hong Kong University of Science and Technology (HKUST) are working to increase the functionality available to wide bandgap gallium nitride (GaN) electronics. GaN is frequently used in power electronics, such as power converters and supplies. However, GaN CMOS technology has been hampered by the difficulties in implementing p-channel transistors and integrat... » read more

Power/Performance Bits: Oct. 26


Printing circuits on irregular shapes Researchers at Pennsylvania State University propose a way to print biodegradable circuits on irregular, complex shapes. “We are trying to enable direct fabrication of circuits on freeform, 3-D geometries,” said Huanyu “Larry” Cheng, professor in Penn State's Department of Engineering Science and Mechanics (ESM). “Printing on complicated objec... » read more

← Older posts Newer posts →