Week In Review: Auto, Security, Pervasive Computing


Automotive, automation General Motors is planning a third electric-vehicle plant. The former Saturn factory will make first fully electric Cadillac, in the former Saturn assembly line. Tesla is allowing some customers to beta test its Full Self-Driving (FSD), according to The Verge. The company pushed the software update to some early access customers to do some real world beta test. Some o... » read more

Week In Review: Auto, Security, Pervasive Computing


Security Intel announced new security features for its code-named Ice Lake CPU, according to a story in SecurityWeek. The 10nm-based Xeon Scalable will have SGX trusted execution environment and several new features for memory encryption, firmware resilience, and cryptographic performance acceleration. The new Total Memory Encryption (TME) feature in the CPU will encrypt access to memory. S... » read more

Week In Review: Auto, Security, Pervasive Computing


Security A new certification program for hardware verification engineers from Edaptive Computing Inc (ECI) and OneSpin Solutions promises to help companies meet IC integrity standards for SoC designs for 5G, IoT, AI, automotive, industrial, defense, and avionics. These designs are often complex, with a variety of elements, such as programmable logic and different cores. The OneSpin Formal Veri... » read more

Protecting Chiplet Architectures With Hardware Security


Chiplets are gaining significant traction as they provide compelling benefits for advancing semiconductor performance, costs, and time to market. With Moore’s Law slowing, building more powerful chips translates into building bigger chips. But with chip dimensions pushing up against reticle limits, growing the size of chips is increasingly impractical. Chiplets offer a new path forward by dis... » read more

Chips Listening To Gibberish


We all talk gibberish once in a while. At least, I do. I might be in a silly mood, thinking aloud, listening to music or talking over the phone using my headphones (they are quite small, and if you don’t notice them, you could think I am crazy). Regardless of the circumstances, I mean no harm, I promise. However, it’s still possible that a passer-by could get distracted trying to figure out... » read more

Secure Silicon Lifecycle Management Architecture For Functional Safety


The rapid growth of electronics for automotive applications fueled by advanced ADAS systems pose new challenges for complex SoC design and Silicon Lifecycle Management (SLM) in the supply chain as well as in-field monitoring and management of the population of chips. In these modern complex devices, ensuring the correct and safe operation requires not only functional safety to check for reli... » read more

AI Design In Korea


Like many in the semiconductor design businesses, Arteris IP is actively working with the Korean chip companies. This shouldn’t be a surprise. If a company is building an SoC of any reasonable size, it needs network-on-chip (NoC) interconnect for optimal QoS (bandwidth and latency regulation and system-level arbitration) and low routing congestion, even in application-centric designs such as ... » read more

One More Time: TOPS Do Not Predict Inference Throughput


Many times you’ll hear vendors talking about how many TOPS their chip has and imply that more TOPS means better inference performance. If you use TOPS to pick your AI inference chip, you will likely not be happy with what you get. Recently, Vivienne Sze, a professor at MIT, gave an excellent talk entitled “How to Evaluate Efficient Deep Neural Network Approaches.” Slides are also av... » read more

Sensor Fusion Challenges In Cars


The automotive industry is zeroing in on sensor fusion as the best option for dealing with the complexity and reliability needed for increasingly autonomous vehicles, setting the stage for yet another shift in how data from multiple devices is managed and utilized inside a vehicle. The move toward greater autonomy has proved significantly more complicated than anyone expected at first. There... » read more

Are FPGAs More Secure Than Processors?


Security concerns often focus on software being executed on processors. But not all electronic functionality runs in software. FPGAs provide another way to do work, and they can be more secure than functions executed in software. FPGAs provide more control of hardware and are more opaque to attackers. In the case of embedded FPGAs, the designer is in complete control of the entire system. Th... » read more

← Older posts