Graphene oxide 2D films integrated with nanowires and ring resonators for enhanced nonlinear optics


New research paper from Optical Sciences Centre, Swinburne University of Technology. Abstract "We report enhanced nonlinear optics in nanowires, waveguides, and ring resonators by introducing layered two-dimensional (2D) graphene oxide (GO) films through experimental demonstration. The GO films are integrated on silicon-on-insulator nanowires (SOI), high index doped silica glass, and sili... » read more

Electrically pumped laser transmitter integrated on thin-film lithium niobate


New research paper from Harvard, in collaboration with Freedom Photonics and HyperLight Corp, and with funding from DARPA and Air Force Office of Scientific Research. Abstract "Integrated thin-film lithium niobate (TFLN) photonics has emerged as a promising platform for the realization of high-performance chip-scale optical systems. Of particular importance are TFLN electro-optic modulato... » read more

Low-cost and Stable SFX-based Semiconductor Materials in Organic Optoelectronics


Abstract: "In the progress of realizing the commercialization of organic optoelectronic materials, the four basic coherent factors are stability, cost, performance, and processability, all which determine the results of device applications. Spiro[fluorene-9,9′-xanthene] (SFX) has been becoming the robust building-block that fulfilling the practical requirements due to its key features of non... » read more

Exploring far-from-equilibrium ultrafast polarization control in ferroelectric oxides with excited-state neural network quantum molecular dynamics


New academic paper out of USC Viterbi School of Engineering: Abstract "Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales w... » read more

Silicon Thermo-Optic Switches with Graphene Heaters Operating at Mid-Infrared Waveband


Abstract "The mid-infrared (MIR, 2–20 μm) waveband is of great interest for integrated photonics in many applications such as on-chip spectroscopic chemical sensing, and optical communication. Thermo-optic switches are essential to large-scale integrated photonic circuits at MIR wavebands. However, current technologies require a thick cladding layer, high driving voltages or may introduce h... » read more

The speed limit of optoelectronics


Abstract "Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon... » read more

Bell state analyzer for spectrally distinct photons


Abstract "We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of ∼98% for discriminating between the |Ψ+⟩ and |Ψ−⟩... » read more

Experimental photonic quantum memristor


Abstract "Memristive devices are a class of physical systems with history-dependent dynamics characterized by signature hysteresis loops in their input–output relations. In the past few decades, memristive devices have attracted enormous interest in electronics. This is because memristive dynamics is very pervasive in nanoscale devices, and has potentially groundbreaking applications ranging... » read more

Wavelength Multiplexed Ultralow-Power Photonic Edge Computing


Abstract "Advances in deep neural networks (DNNs) are transforming science and technology. However, the increasing computational demands of the most powerful DNNs limit deployment on low-power devices, such as smartphones and sensors -- and this trend is accelerated by the simultaneous move towards Internet-of-Things (IoT) devices. Numerous efforts are underway to lower power consumption, but ... » read more

The resurrection of tellurium as an elemental two-dimensional semiconductor


Abstract "The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensional chiral atomic structure which holds great promise for next-generation electronic, ... » read more

← Older posts Newer posts →