U.S. Strategy on Microelectronics Research


The U.S. government released a 61 page report titled "National Strategy on Microelectronics Research" by the Subcommittee On Microelectronics Leadership, Committee on Homeland and National Security of the National Science and Technology Council. The report states four goals guiding the agency's efforts in microelectronics research: "Goal 1. Enable and accelerate research advances for futu... » read more

Quantum Computing: New Ion Trap On A Microfabricated Chip (ETH Zurich)


A new technical paper titled "Penning micro-trap for quantum computing" was published by researchers at ETH Zürich, Leibniz Universität Hannover, and Physikalisch-Technische Bundesanstalt. Abstract "Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times. However, the use of r... » read more

An Open Hardware Approach in Quantum Technology


A technical paper titled "Open Hardware Solutions in Quantum Technology" was published by researchers at Unitary Fund, Qruise GmbH, Technical University of Valencia, Lawrence Berkeley National Laboratory, Fermi National Accelerator Laboratory, Sandia National Laboratories, and others. Abstract "Quantum technologies such as communications, computing, and sensing offer vast opportunities for ... » read more

Reprogrammable Light-Based Processor (RMIT)


A new technical paper titled "Programmable high-dimensional Hamiltonian in a photonic waveguide array" was published by researchers at RMIT University, ETH Zurich, Griffith University, Heriot-Watt University, University of Muenster Purdue University and others. Abstract "Waveguide lattices offer a compact and stable platform for a range of applications, including quantum walks, condensed m... » read more

Large-Scale Quantum-Processing Architecture Surpassing The Tier of 1000 Atomic Qubits (TU Darmstadt)


A technical paper titled “Supercharged two-dimensional tweezer array with more than 1000 atomic qubits” was published by researchers at Technische Universität Darmstadt (TU Darmstadt). Abstract: "We report on the realization of a large-scale quantum-processing architecture surpassing the tier of 1000 atomic qubits. By tiling multiple microlens-generated tweezer arrays, each operated by a... » read more

A Hypermultiplexed Integrated Tensor Optical Processor (USC, MIT et al.)


A technical paper titled “Hypermultiplexed Integrated Tensor Optical Processor” was published by researchers at the University of Southern California, Massachusetts Institute of Technology (MIT), City University of Hong Kong, and NTT Research. Abstract: "The escalating data volume and complexity resulting from the rapid expansion of artificial intelligence (AI), internet of things (IoT) a... » read more

Rapid Exchange Cooling With Trapped Ions For Implementation In A Quantum Charge-Coupled Device


A technical paper titled “Rapid exchange cooling with trapped ions” was published by researchers at Georgia Tech Research Institute. Abstract: "The trapped-ion quantum charge-coupled device (QCCD) architecture is a leading candidate for advanced quantum information processing. In current QCCD implementations, imperfect ion transport and anomalous heating can excite ion motio... » read more

Simulation Of A Kicked Ising Quantum System On The Heavy Hexagon Lattice


A technical paper titled “Efficient Tensor Network Simulation of IBM’s Eagle Kicked Ising Experiment” was published by researchers at the Flatiron Institute and New York University. Abstract: "We report an accurate and efficient classical simulation of a kicked Ising quantum system on the heavy hexagon lattice. A simulation of this system was recently performed on a 127-qubit quantum pr... » read more

A Method To Transform Everyday Materials Into Conductors For Use In Quantum Computers


A technical paper titled “Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe5” was published by researchers at University of California Irvine, Los Alamos National Laboratory, and University of Tennessee. Abstract: "The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. Howe... » read more

Superexchange Coupling Of Donor Qubits In Si For Quantum Computers (UNSW)


A technical paper titled “Superexchange coupling of donor qubits in silicon” was published by researchers at University of New South Wales. Abstract: "Atomic engineering in a solid-state material has the potential to functionalize the host with novel phenomena. STM-based lithographic techniques have enabled the placement of individual phosphorus atoms at selective lattice sites of silicon... » read more

← Older posts Newer posts →