Why Connectivity Is Changing Microcontrollers


More devices are being connected to the internet and to each other, transforming what used to be a simple microprocessor with fixed memory and limited connectivity into a much more complex and versatile device. These new MCUs need more compute power, more memory both on and off-chip, and on-the-fly encryption/decryption. Sivaram Trikutam, vice president of the Wi-Fi product line at Infineon, ta... » read more

Next-Gen High-Speed Communication In Data Centers


Data centers are being flooded with data. While more of it needs to be processed locally, much of it also needs to be moved around within a system and between systems. This has put a spotlight on a variety of new optical technologies and methodologies. Yang Zhang, senior product marketing manager at Cadence, talks about the rapid increase in different types of optics and optical scenarios being... » read more

Real-World Applications Of Computational Fluid Dynamics


More powerful chips are enabling chips to process more data faster, but they're also having a revolutionary impact on how that data can be used. Simulations that used to take days or weeks now can be completed in a matter of hours, and multi-physics simulations that were implausible to even consider are now very much in the realm of what is possible. Parviz Moin, professor of mechanical enginee... » read more

Making Electronics More Efficient


Projections about the amount of energy required for AI in data centers and other electronic devices are putting a spotlight on more efficient electronics. But making chips and systems more efficient is an enormous challenge. It used to be as simple as turning down the voltage or moving to the next process node, but those approaches are no longer yielding the same kinds of benefits as in the pas... » read more

Toward Software-Defined Vehicles


Speed is everything when it comes to designing automotive electronics, but not in the usual way. In the past, product cycles often lasted five to seven years, from initial design to implementation inside of vehicles. That no longer works as vehicles adopt more electronic features to replace mechanical ones, and as competition heats up over the latest features and nearly instantaneous over-the-a... » read more

Changes In Formal Verification


For the better part of two decades, formal verification was considered too difficult to use in many designs and too slow for anything but narrow bug hunting. Much has changed recently. Ashish Darbari, CEO of Axiomise, explains why formal is now essential for finding deadlocks, security holes, and Xprop issues in mission-critical, safety-critical, and AI designs, and how that will apply to chipl... » read more

Promises And Pitfalls Of SoC Restructuring


As chips become more complex and increasingly heterogeneous, it's becoming more difficult to keep track of different methodologies, tools, and blend data from different sources to create a chip. Tim Schneider, staff application engineer at Arteris, explains why IP-XACT has become so critical, why it took so long to gain a solid foothold in chip design, and how the new IP-XACT standard interface... » read more

Making Adaptive Test Work Better


One of the big challenges for IC test is making sense of mountains of data, a direct result of more features being packed onto a single die, or multiple chiplets being assembled into an advanced package. Collecting all that data through various agents and building models on the tester no longer makes sense for a couple reasons — there is too much data, and there are multiple customers using t... » read more

MCU Changes At The Edge


Microcontrollers are becoming a key platform for processing machine learning at the edge due to two significant changes. First, they now can include multiple cores, including some for high performance and others for low power, as well as other specialized processing elements such as neural network accelerators. Second, machine learning algorithms have been pruned to the point where inferencing ... » read more

Electromigration And IR Drop At Advanced Nodes


Manufacturing chips at 3nm and below is a challenge, but it's only part of the problem. Designing chips that can be manufactured and will actually work is potentially an even bigger problem. There is more data to sift through for place-and-route, less margin to pad a design, and there are more physical effects to contend with as transistors get taller, density increases, and chips age. Jeff Wil... » read more

← Older posts Newer posts →