The case for cold DRAM.
Cryogenic, superconducting digital processors offer the promise of greatly reduced operating power for server-class computing systems. This is due to the exceptionally low energy per operation of Single Flux Quantum circuits built from Josephson junction devices operating at the temperature of 4 Kelvin. Unfortunately, no suitable same-temperature memory technology yet exists to complement these SFQ logic technologies. Possible memory technologies are in the early stages of development but will take years to reach the cost per bit and capacity capabilities of current semiconductor memory. We discuss the pros and cons of four alternative memory architectures that could be coupled to SFQ-based processors. Our feasibility studies indicate that cold memories built from CMOS DRAM and operating at 77K can support superconducting processors at low cost-per-bit, and that they can do so today.
To read more, click here.
The more compute power, the better. But what’s the best way to get there?
Yield rises with mask protection; multiple sources will likely reduce costs.
More heterogeneous designs and packaging options add challenges across the supply chain, from design to manufacturing and into the field.
CNTs promise big performance improvements, but achieving consistency and replacing incumbent technologies will be difficult.
An ecosystem is required to make chiplets a viable strategy for long-term success, and ecosystems are built around standards. Those standards are beginning to emerge today.
The backbone of computing architecture for 75 years is being supplanted by more efficient, less general compute architectures.
How long a chip is supposed to function raises questions design teams need to think about, including how much they trust aging models.
Servers today feature one or two x86 chips, or maybe an Arm processor. In 5 or 10 years they will feature many more.
Tradeoffs in AI/ML designs can affect everything from aging to reliability, but not always in predictable ways.
New technology could have an impact on NVM, in-memory processing, and neuromorphic computing.
But one size does not fit all, and fine-tuning is required.
Advanced nodes and packaging are turning minor issues into major ones.
Challenges persist for DRAM, flash, and new memories.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Leave a Reply