DW-MTJ Devices For Noise-Resilient Networks For Neuromorphic Computing On The Edge


A technical paper titled “Stochastic domain wall-magnetic tunnel junction artificial neurons for noise-resilient spiking neural networks” was published by researchers at University of Texas at Austin.


“The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge.”

Find the technical paper here. Published: June 2023 (preprint).

Leonard, Thomas, Samuel Liu, Harrison Jin, and Jean Anne C. Incorvia. “Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for Noise-Resilient Spiking Neural Networks.” arXiv preprint arXiv:2304.04794 (2023).

Related Reading
Neuromorphic Computing Knowledge Center
Spiking Neural Network (SNN) Knowledge Center

Leave a Reply

(Note: This name will be displayed publicly)