Amplifying interferometric signals—without a corresponding increase in extraneous, unwanted input, or “noise”—on a 2 mm by 2 mm integrated photonic chip.
Abstract:
“Optical interferometry plays an essential role in precision metrology such as in gravitational wave detection, gyroscopes, and environmental sensing. Weak value amplification enables reaching the shot-noise-limit of sensitivity, which is difficult for most optical sensors, by amplifying the interferometric signal without amplifying certain technical noises. We implement a generalized form of weak value amplification on an integrated photonic platform with a multi-mode interferometer. Our results pave the way for a more sensitive, robust, and compact platform for measuring phase, which can be adapted to fields such as coherent communications and the quantum domain. In this work, we show a 7 dB signal enhancement in our weak value device over a standard Mach-Zehnder interferometer with equal detected optical power, as well as frequency measurements with 2 kHz sensitivity by adding a ring resonator.”
Find the open access technical paper link here and University of Rochester article here.
Song, M., Steinmetz, J., Zhang, Y. et al. Enhanced on-chip phase measurement by inverse weak value amplification. Nat Commun 12, 6247 (2021). https://doi.org/10.1038/s41467-021-26522-2.
Visit Semiconductor Engineering’s Technical Paper repository here and discover many more chip industry academic papers.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply