How The Doubling Of Interconnect Bandwidth With PCI Express 6.0 Impacts IP Electrical Validation

The importance of PCIe 6.0 compliance, how to successfully achieve interoperability through PHY verification, and measurement methodologies for PCIe 6.0 transceivers.

popularity

As a result of the innovations taking place in CPUs, GPUs, accelerators, and switches, the interface in hyperscale datacenters now requires faster data transfers both between compute and memory and onto the network. PCI Express (PCIe®) provides the backbone for these interconnects and is used to build protocols such as Computer Express Link (CXL™) and Universal Chiplet Interconnect Express (UCIe™). The resource-sharing capability of CXL is popularizing memory pulling/expansion across multiple machines and becoming the solution for cache coherent interconnect for processors, providing lowest latency with highest bandwidth. CXL and NVM Express® use the PCIe physical layer (PHY) and leverage the PCIe upper layers, software stack and platform connectivity because of their simplicity and adaptability. UCIe, the latest die-to-die standard, will also build upon PCIe at the protocol layer to provide reliable data transfer, link management and CXL cache coherency. Hence PCIe has become the de-facto standard of interconnect for high-speed data transfers between processing/computing nodes due to its high-speed, low-latency, and low-power attributes.

This paper discusses industry demands for PCI Express 6.0 and future standards, the importance of compliance, how to successfully achieve interoperability through PHY verification, and measurement methodologies for PCIe 6.0 transceivers. Synopsys PCI Express 6.0 IP and Tektronix test and measurement solutions are actively addressing this latest technology inflection point.

Click here to read more.



Leave a Reply


(Note: This name will be displayed publicly)