Entangled microwaves to create the world’s first quantum radar.
Abstract
“Quantum illumination is a powerful sensing technique that employs entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. The promised advantage over classical strategies is particularly evident at low signal powers, a feature which could make the protocol an ideal prototype for non-invasive biomedical scanning or low-power short-range radar. In this work we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields using a Josephson parametric converter to illuminate a room-temperature object at a distance of 1 meter in a free-space detection setup. We implement a digital phase conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.”
Find the technical paper here. MIT news summary is here.
Less precision equals lower power, but standards are required to make this work.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Ensuring that your product contains the best RISC-V processor core is not an easy decision, and current tools are not up to the task.
Wafer manufacturing and GPUs draw investment; 106 companies raise $2.8B.
Heterogenous integration depends on reliable TSVs, microbumps, vias, lines, and hybrid bonds — and time to digest all the options.
How prepared the EDA community is to address upcoming challenges isn’t clear.
Advanced etch holds key to nanosheet FETs; evolutionary path for future nodes.
Details on more than $500B in new investments by nearly 50 companies; what’s behind the expansion frenzy, why now, and challenges ahead.
From specific design team skills, to organizational and economic impacts, the move to bespoke silicon is shaking things up.
Less precision equals lower power, but standards are required to make this work.
New memory approaches and challenges in scaling CMOS point to radical changes — and potentially huge improvements — in semiconductor designs.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Leave a Reply