Managing Voltage Drop At 10/7nm


Power integrity is becoming a bigger problem at 10/7nm because existing tools such as static analysis no longer are sufficient. Power integrity is a function of static and dynamic voltage drop in the power delivery network. And until recently, static analysis did an effective job in measuring the overall robustness of PDN connectivity. As such, it is a proxy for PDN strength. The problem is ... » read more

Patterning Problems Pile Up


Chipmakers are ramping up 16nm/14nm finFET processes, with 10nm and 7nm now moving into early production. But at 10nm and beyond, chipmakers are running into a new set of problems. While shrinking feature sizes of a device down to 10nm, 7nm, 5nm and perhaps beyond is possible using current and future fab equipment, there doesn't seem to be a simple way to solve the edge placement error (EPE)... » read more

Following Multiple Patterns


The lithography market is in flux. Today, chipmakers plan to extend today’s 193nm immersion lithography and multi-patterning to at least 10nm and 7nm. For the most critical layers, though, it’s unclear if optical lithography can extend beyond 7nm. For that reason, chipmakers hope to insert extreme ultraviolet (EUV) lithography at 7nm and/or 5nm. To get a handle on the state of patterning, S... » read more

China: Fab Boom or Bust?


China’s semiconductor industry continues to expand at a frenetic pace. At present there are nearly two dozen new fab projects in China. Whether all these fab projects get off the ground is not entirely clear because the dynamics in China remain fluid. What is clear is the motivation behind this building frenzy—China is trying to reduce its huge trade imbalance in ICs. The country continu... » read more

Power Impacting Cost Of Chips


The increase in complexity of the power delivery network (PDN) is starting to outpace increases in functional complexity, adding to the already escalating costs of modern chips. With no signs of slowdown, designers have to ensure that overdesign and margining do not eat up all of the profit margin. The semiconductor industry is used to problems becoming harder at smaller geometries, but unti... » read more

10nm And 7nm Routability – How Is Your CAD Flow Doing?


At DesignCon in January, I was a panelist at a panel session entitled “Power Integrity For 10nm/7nm SoCs - Overcoming Physical Design Challenges And TAT.” I was on the panel together with Arvind Vel, Sr. Director Applications Engineering, ANSYS, Inc. and Ruggero Castagnetti, Distinguished Engineer, Broadcom Limited. This topic is of course extremely broad, but it was interesting getting fee... » read more

Worst-Case Results Causing Problems


The ability of design tools to identify worst-case scenarios has allowed many chipmakers to flag potential issues well ahead of tapeout, but as process geometries shrink that approach is beginning to create its own set of issues. This is particularly true at 16/14nm and below, where extra circuitry can slow performance, boost the amount of power required to drive signals over longer, thinne... » read more

What Next For OSATs


Semiconductor Engineering sat down to discuss IC-packaging and business trends with Tien Wu, chief operating officer at Taiwan’s Advanced Semiconductor Engineering ([getentity id="22930" comment="ASE"]), the world’s largest outsourced semiconductor assembly and test (OSAT) vendor. What follows are excerpts of that conversation. SE: What’s the outlook for the IC industry in 2017? Wu:... » read more

Battling Fab Cycle Times


The shift from planar devices to finFETs enables chipmakers to scale their processes and devices from 16nm/14nm and beyond, but the industry faces several challenges at each node. Cost and technical issues are the obvious challenges. In addition, cycle time—a key but less publicized part of the chip-scaling equation—also is increasing at every turn, creating more angst for chipmakers and... » read more

Fix Processes, Then Silos


Jack Welch, former CEO of GE, was a big proponent of what he called a "boundaryless corporation." It was a good sound bite, but it pales in comparison to former Intel CEO Andy Grove's philosophy of working out of a cubicle, just like the rest of his staff. While it's great to have corporate buy-in for breaking down silos, which are vertically integrated, the real problem for semiconductor c... » read more

← Older posts Newer posts →