Another Brick Or Two In The Chip Design Wall


Physical challenges come and go in the semiconductor world. But increasingly, they also stick around, showing up in inconvenient places at the worst time. The chip industry has confronted and solved some massive challenges over the years. There was the 1 micron lithography wall, which was supposed to be impenetrable. That was followed by the 193nm litho challenge, which cost many billions of... » read more

Signoff-Compatible CDC


Tanveer Singh, senior staff consulting applications engineer at Synopsys, explains why netlist clock domain crossing is now an essential complement to RTL CDC, why CDC issues are worse at advanced nodes and in AI chips, and why dealing with CDC effectively is becoming a competitive requirement for performance and low power. » read more

CEO Outlook: Rising Costs, Chiplets, And A Trade War


Semiconductor Engineering sat down to discuss what's changing across the semiconductor industry with Wally Rhines, CEO emeritus at Mentor, a Siemens Business; Jack Harding, president and CEO of eSilicon; John Kibarian, president and CEO of PDF Solutions; and John Chong, vice president of product and business development for Kionix. What follows are excerpts of that discussion, which was held in... » read more

5nm Vs. 3nm


Foundry vendors are readying the next wave of advanced processes, but their customers will face a myriad of confusing options—including whether to develop chips at 5nm, wait until 3nm, or opt for something in between. The path to 5nm is well-defined compared with 3nm. After that, the landscape becomes more convoluted because foundries are adding half-node processes to the mix, such as 6nm ... » read more

Advanced Process Control


David Fried, vice president of computational products at Lam Research, looks at shrinking tolerances at advanced processes, how that affects variation in semiconductor manufacturing, and what can be done to achieve the benefits of scaling without moving to new transistor architectures. » read more

Sidestepping Moore’s Law


Calvin Cheung, vice president of engineering at ASE, sat down with Semiconductor Engineering to talk about advanced packaging, the challenges involved with the technology, and the implications for Moore’s Law. What follows are excerpts of that conversation. SE: What are some of the big issues with IC packaging today? Cheung: Moore’s Law is slowing down, but transistor scaling will co... » read more

Meltdown, Spectre And Foreshadow


Ben Levine, senior director of product management for Rambus’ Security Division, talks with Semiconductor Engineering about hardware-specific attacks, why they are so dangerous, and how they work. » read more

Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

Automotive System Design


Burkhard Huhnke, vice president of automotive at Synopsys, looks at how to build and update chips in increasingly sophisticated vehicles, where the problem spots are, and what comes next. » read more

IP Requires System Context At 6/5/3nm


Driven by each successive generation of semiconductor manufacturing technology, complexity has reached dizzying levels. Every part of the design, verification and manufacturing is more complicated and intense the more transistors are able to be packed onto a die. For these reasons, the entire system must be taken into consideration as a whole – not just as individual building blocks as could ... » read more

← Older posts