Nodes Vs. Nodelets


Foundries are flooding the market with new nodes and different process options at existing nodes, spreading confusion and creating a variety of challenges for chipmakers. There are full-node processes, such as 10nm and 7nm, with 5nm and 3nm in R&D. But there also is an increasing number of half-nodes or "node-lets" being introduced, including 12nm, 11nm, 8nm, 6nm and 4nm. Node-lets ar... » read more

The Future Of FinFETs


The number of questions about finFETs is increasing—particularly, how long can they continue to be used before some version of gate-all-around FET is required to replace them. This discussion is confusing in many respects. For one thing, a 7nm finFET for TSMC or Samsung is not the same as a 7nm finFET for Intel or GlobalFoundries. There are a bunch of other nodes being proposed, as well, i... » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

A New Memory Contender?


Momentum is building for a new class of ferroelectric memories that could alter the next-generation memory landscape. Generally, ferroelectrics are associated with a memory type called ferroelectric RAMs (FRAMs). Rolled out by several vendors in the late 1990s, FRAMs are low-power, nonvolatile devices, but they are also limited to niche applications and unable to scale beyond 130nm. While... » read more

What the Experts Think


Coventor recently sponsored an expert panel discussion at IEDM 2017 to discuss how we might advance the semiconductor industry into the next generation of technology. The panel discussed alternative methods to solve fundamental problems of technology scaling, using advances in semiconductor architectures, patterning, metrology, advanced process control, variation reduction, co-optimization and ... » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

What’s Next For Atomic Layer Etch?


After years in R&D, several fab tool vendors last year finally began to ship systems based a next-generation technology called atomic layer etch (ALE). [getkc id="284" kc_name="ALE"] is is moving into 16/14nm, but it will play a big role at 10/7nm and beyond. The industry also is working on the next wave of ALE technology for advanced logic and memory production. Used by chipmakers fo... » read more

New Power Concerns At 10/7nm


As chip sizes and complexity continues to grow exponentially at 7nm and below, managing power is becoming much more difficult. There are a number of factors that come into play at advanced nodes, including more and different types of processors, more chip-package decisions, and more susceptibility to noise of all sorts due to thinner insulation layers and wires. The result is that engineers ... » read more

The Materials Gap


When consolidation thinned the ranks of semiconductor foundries and equipment makers, materials companies figured things were about to get better. They haven't. There are a couple of reasons for this. First, semiconductors are now so complex and difficult to develop that a slew of innovations are required on all sides. Everyone is familiar with transistor structures, interconnects and lithog... » read more

Unsolved Litho Issues At 7nm


By Ed Sperling & Mark LaPedus EUV lithography is creating a new set of challenges on the photomask side for which there currently are no simple solutions. While lithography is viewed as a single technology, [gettech id="31045" comment="EUV"] actually is a collection of technologies. Not all of those technologies have advanced equally and simultaneously, however. For example, aberrations... » read more

← Older posts