Moving Electrons Is Getting Harder


Numerous executives across the ecosystem—from EDA and equipment companies to foundries—recently have stated that Moore's Law has at least 10 more years of life. This is interesting math, considering the semiconductor industry is now working on 10nm, with chips expected to roll out next year. So given that Moore's Law is on a two-year cadence of doubling the number of transistors every 24... » read more

How Long Will FinFETs Last?


Semiconductor Engineering sat down to discuss how long FinFETs will last and where we will we go next with Vassilios Gerousis, Distinguished Engineer at [getentity id="22032" e_name="Cadence"]; Juan Rey, Sr. Director of Engineering for Calibre R&D at [getentity id="22017" e_name="Mentor Graphics"]; Kelvin Low, Senior Director Foundry Marketing at [getentity id="22865" e_name="Samsung"]; and Vic... » read more

Pathfinding Beyond 10nm


After higher aspect-ratio finFETs and higher mobility SiGe and III-V materials, the industry will move to lateral nanowires and then to vertical nanowire transistors, and to new tunnel junction FETs or spin wave architectures ─ or to various combinations of these technologies for different applications, reported An Steegan, Imec senior vice president of process technology, during SEMICON West... » read more

Executive Insight: Aart de Geus


Aart de Geus, chairman and co-CEO of Synopsys, sat down with Semiconductor Engineering to talk about acquisitions, software and EDA. What follows are excerpts of that interview, which was conducted in front of a live audience at DAC. SE: A lot of Synopsys' investments are moving in a new direction, namely software. Why is that becoming so important to your company? De Geus: It's not a dif... » read more

Which Process, Material, IP?


For years chipmakers have been demanding more choices. They've finally gotten what they wished for—so many possibilities, in fact, that engineering teams of all types are having trouble wading through them. And to make matters worse, some choices now come with unexpected and often unwanted caveats. At the most advanced nodes it's a given that being able to shrink features and double patter... » read more

Why DSA Is Cost Effective For 7nm And Below


The upcoming 7nm process node presents tough challenges both for printability and cost. At 7nm and below, multi-patterning is required, which makes the manufacturing process more expensive by requiring more masks. To control costs, any alternative technology that provides equivalent yields with fewer patterning steps should be explored. One promising option is to use directed self-assembly (... » read more

Fab Issues At 7nm And 5nm


The race toward the 7nm logic node officially kicked off in July, when IBM Research, GlobalFoundries and Samsung jointly rolled out what the companies claim are the industry’s first 7nm test chips with functional transistors. They're not alone, of course. Intel and TSMC also are racing separately to develop 7nm technology. And in the R&D labs, chipmakers also are working on technologies f... » read more

What Will 7nm And 5nm Look Like?


Citing an assortment of undisclosed manufacturing issues, Intel in July pushed out the introduction of its 10nm chip and process technology to the second half of 2017. This is roughly six or more months later than expected. With the delay at 10nm, [getentity id="22846" e_name="Intel"] also pushed out its process cadence from 2 to 2.5 years. Other foundries, meanwhile, are struggling to keep ... » read more

Speeding Up E-beam Inspection


Wafer inspection, the science of finding killer defects in chips, is reaching a critical juncture. Optical inspection, the workhorse technology in the fab, is being stretched to the limit at advanced nodes. And e-beam inspection can find tiny defects, but it remains slow in terms of throughput. So to fill the gap, the industry has been working on a new class of multiple beam e-beam inspectio... » read more

The Roadmap To 5nm


By Debra Vogler Among the challenges the semiconductor industry will be facing as it moves down the path to node 5 are resistance-capacitance (RC) management and integration. SEMI is pleased to announce a SEMICON West 2015 STS technical program exploring these and other high-volume manufacturing challenges. According to An Steegen, SVP of Process Technology at imec, the list of RC managemen... » read more

← Older posts Newer posts →