Fan-Out And Packaging Challenges


Semiconductor Engineering sat down to discuss various IC packaging technologies, wafer-level and panel-level approaches, and the need for new materials with William Chen, a fellow at ASE; Michael Kelly, vice president of advanced packaging development and integration at Amkor; Richard Otte, president and CEO of Promex, the parent company of QP Technologies; Michael Liu, senior director of globa... » read more

EDA Vendors Widen Use Of AI


EDA vendors are widening the use of AI and machine learning to incorporate multiple tools, providing continuity and access to consistent data at multiple points in the semiconductor design flow. While gaps remain, early results from a number of EDA tools providers point to significant improvements in performance, power, and time to market. AI/ML has been deployed for some time in EDA. Still,... » read more

Software-Hardware Co-Design Becomes Real


For the past 20 years, the industry has sought to deploy hardware/software co-design concepts. While it is making progress, software/hardware co-design appears to have a much brighter future. In order to understand the distinction between the two approaches, it is important to define some of the basics. Hardware/software co-design is essentially a bottom-up process, where hardware is deve... » read more

Optimization Driving Changes In Microarchitectures


The semiconductor ecosystem is at a turning point for how to best architect the CPU based on the explosion of data, the increased usage of AI, and the need for differentiation and customization in leading-edge applications. In the past, much of this would have been accomplished by moving to the next process node. But with the benefits from scaling diminishing at each new node, the focus is s... » read more

Microelectronics And The AI Revolution


It is no secret that artificial intelligence and machine learning (AI/ML) are critical drivers for growth in electronics, and particularly, for semiconductors. The recent AI Hardware Summit showcased trends in AI/ML, both in enabling and using it in various application domains, including EDA. As part of the summit, Imec had organized a panel on “Advanced Microelectronics Technologies Driving ... » read more

Building Complex Chips That Last Longer


Semiconductor Engineering sat down to talk about design challenges in advanced packages and nodes with John Lee, vice president and general manager for semiconductors at Ansys; Shankar Krishnamoorthy, general manager of Synopsys' Design Group; Simon Burke, distinguished engineer at Xilinx; and Andrew Kahng, professor of CSE and ECE at UC San Diego. This discussion was held at the Ansys IDEAS co... » read more

Using ML In EDA


Machine learning is becoming essential for designing chips due to the growing volume of data stemming from increasing density and complexity. Nick Ni, director of product marketing for AI at Xilinx, examines why machine learning is gaining traction at advanced nodes, where it’s being used today and how it will be used in the future, how quality of results compare with and without ML, and what... » read more

Deploying Artificial Intelligence At The Edge


By Pushkar Apte and Tom Salmon Rapid advances in artificial intelligence (AI) have made this technology important for many industries, including finance, energy, healthcare, and microelectronics. AI is driving a multi-trillion-dollar global market while helping to solve some tough societal problems such as tracking the current pandemic and predicting the severity of climate-driven events lik... » read more

Tradeoffs Between Edge Vs. Cloud


Increasing amounts of processing are being done on the edge, but how the balance will change between what's computed in the cloud versus the edge remains unclear. The answer may depend as much on the value of data and other commercial reasons as on technical limitations. The pendulum has been swinging between doing all processing in the cloud to doing increasing amounts of processing at the ... » read more

On the Road To Higher Memory Bandwidth


In the decade since HBM was first announced, we’ve seen two-and-a-half generations of the standard come to market. HBM’s “wide and slow” architecture debuted first at a data rate of 1 gigabit per second (Gbps) running over a 1024-bit wide interface. The product of that data rate and that interface width provided a bandwidth of 128 gigabytes per second (GB/s). In 2016, HBM2 doubled the s... » read more

← Older posts Newer posts →