Manufacturing Bits: March 19


Exascale computers Intel and the U.S. Department of Energy (DOE) have set plans to develop and deliver the first exascale supercomputer in the United States. The system, called Aurora, will provide an exaFLOP of performance or a quintillion floating point computations per second. Targeted for delivery in 2021, the system is being developed at DOE’s Argonne National Laboratory. The system ... » read more

Manufacturing Bits: Dec. 26


Polymer pen litho Using a polymer pen lithography technique, the Air Force Research Laboratory and Northwestern University have developed a quick way to discover new materials. Researchers have developed a combinatorial library of tiny nanoparticles on a substrate. A combinatorial library, sometimes referred to as a megalibrary, is a collection of different structures. Each structure is enc... » read more

Manufacturing Bits: Oct. 30


World’s smallest gyroscope The California Institute of Technology has developed the world's smallest optical gyroscope. The gyroscope is 500 times smaller than current devices, but it can detect phase shifts that are 30 times smaller than today’s systems. [caption id="attachment_24139584" align="alignleft" width="300"] The new optical gyroscope—shown here with grains of rice—is 5... » read more

Manufacturing Bits: July 16


Levitating metrology The Instituto de Ciencias Físicas UNAM has developed a new contaminant detection technique. It uses sound waves to levitate droplets of water for sampling purposes. Researchers use a technique called laser induced breakdown spectroscopy (LIBS). The technique analyzes heavy metals in levitating drops of water, according to The Optical Society (OSA) journal Optics Letter... » read more

Integrating Memristors For Neuromorphic Computing


Much of the current research on neuromorphic computing focuses on the use of non-volatile memory arrays as a compute-in-memory component for artificial neural networks (ANNs). By using Ohm’s Law to apply stored weights to incoming signals, and Kirchoff’s Laws to sum up the results, memristor arrays can accelerate the many multiply-accumulate steps in ANN algorithms. ANNs are being dep... » read more

Power/Performance Bits: Apr. 10


Lithium-air battery Researchers at the University of Illinois at Chicago and Argonne National Laboratory designed a new lithium-air battery that works in a natural air environment and still functioned after 750 charge/discharge cycles, a record for this battery type. In theory, lithium-air batteries work by combining lithium present in the anode with oxygen from the air to produce lithium p... » read more

Manufacturing Bits: April 3


World's brightest accelerator Japan’s High Energy Accelerator Research Organization (KEK) is readying what is considered the world’s most luminous or brightest particle accelerator. The system, dubbed the SuperKEKB, combines an electron-positron collider with a new and advanced detector. The storage ring system is designed to explore and measure rare decays of elementary particles, such... » read more

Power/Performance Bits: Jan. 23


Atomristors for thin memory Engineers at The University of Texas at Austin and Peking University developed a thin memory storage device with dense memory capacity. Dubbed "atomristors," the device enables 3-D integration of nanoscale memory with nanoscale transistors on the same chip. "For a long time, the consensus was that it wasn't possible to make memory devices from materials that were... » read more

Power/Performance Bits: Jan. 16


Lithium-iron-oxide battery Scientists at Northwestern University and Argonne National Laboratory developed a rechargeable lithium-iron-oxide battery that can cycle more lithium ions than its common lithium-cobalt-oxide counterpart, leading to a much higher capacity. For their battery, the team not only replaced cobalt with iron, but forced oxygen to participate in the reaction process as we... » read more

Manufacturing Bits: Jan. 2


World’s coldest chip Using a network of nuclear refrigerators, the University of Basel and others claim to have set the record for the world’s coldest chip. Researchers have cooled a chip to a temperature lower than 3 millikelvin. A millikelvin is one thousandth of a kelvin. Absolute zero is 0 kelvin or minus 273.15 °C. In the experiment, researchers used a chip that includes a Coulomb... » read more

← Older posts Newer posts →