Power/Performance Bits: Aug. 5


Biofuels from microorganisms Researchers at Uppsala University are working on adapting microorganisms to be capable of producing useful biofuels out of carbon dioxide and solar energy. The team is focused on a series of modified cyanobacteria that produces the alcohol butanol, said Pia Lindberg, Senior Lecturer at the Department of Chemistry Ångström Laboratory, Uppsala University. "When ... » read more

Power/Performance Bits: Oct. 16


On-chip modulator Researchers at Harvard SEAS and Nokia Bell Labs boosted shrunk down an important component of optoelectronics with an on-chip modulator that is 100 times smaller and 20 times more efficient than current lithium niobite (LN) modulators. Lithium niobate modulators form the basis of modern telecommunications, converting electronic data to optical information in fiber optic ca... » read more

Manufacturing Bits: June 12


Elastic diamonds A group has developed a way to make elastic diamonds, enabling tiny diamond needles that can flex and stretch. Ulsan National Institute of Science and Technology (UNIST), the Massachusetts Institute of Technology (MIT), the City University of Hong Kong and Nanyang Technological University have developed a process that enables elastic diamonds. Elastic diamonds could one day... » read more

Manufacturing Bits: March 14


Sonic screwdrivers and tricorders Inspired by two famous TV shows, the Australian National University (ANU) has developed a futuristic handheld device that combines molecular MRI and mass spectrometry for use in chemical analysis of objects. The device was inspired by the sonic screwdriver from Doctor Who and the tricorder from Star Trek. The sonic screwdriver is a tool used in Doctor Who, ... » read more

Manufacturing Bits: Dec. 20


3D printed wind instruments Autodesk Research and Dartmouth have developed a 3D printing technology that enables novel musical wind instruments in the form of animals, doughnuts and other shapes. With a 3D printer, researchers devised 16 free-form wind instruments in various shapes, such as a star, bunny, snowman, dragon, horse, pig, cat and sheep. There is even a way to make a doughnut in... » read more

Power/Performance Bits: April 19


Ferroelectric non-volatile memory Scientists from the Moscow Institute of Physics and Technology (MIPT), the University of Nebraska, and the University of Lausanne in Switzerland succeeded in growing ultra-thin (2.5-nanometer) ferroelectric films based on hafnium oxide that could potentially be used to develop non-volatile memory elements called ferroelectric tunnel junctions. The film was g... » read more

Manufacturing Bits: March 22


Tunable windows Harvard University has put a new twist on tunable windows. Researchers have devised a new manufacturing technique that can change the opacity of a window. With the flip of a switch, the window can become cloudy, clear or somewhere in the middle. Tunable windows, which aren’t new, rely on electrochemical reactions. Typically, the glass is coated with materials using vacuum... » read more

System Bits: Feb. 16


WW seismic network app UC Berkeley researchers have released a free Android app that uses a smartphone’s ability to record ground shaking from an earthquake, with the goal of creating a worldwide seismic detection network that could eventually warn users of impending jolts from nearby quakes. The app, called MyShake, is available from the Google Play Store and runs in the background with... » read more

Power/Performance Bits: July 28


Synthesizing graphene on silicon Researchers from Korea University, in Seoul, developed an easy and microelectronics-compatible method to grow graphene and have successfully synthesized wafer-scale (four inches in diameter), high-quality, multi-layer graphene on silicon substrates. The method is based on an ion implantation technique, a process in which ions are accelerated under an electric... » read more

Power/Performance Bits: July 21


Hybrid crystals for efficient LEDs A team from the University of Toronto combined two promising solar cell materials together for the first time, creating a new platform for LED technology. The team designed a way to embed strongly luminescent nanoparticles called colloidal quantum dots into perovskite. Perovskites are a family of materials that can be easily manufactured from solution, a... » read more

← Older posts Newer posts →