AiP/AiM Design For mmWave Applications — Advanced RF Front-End Design Flows From Concept To Signoff


System requirements for broad bandwidth, millimeter-wave (mmWave) spectrum, phased arrays, and integrated antennas and front-ends are evolving. The challenge for engineers will be achieving the cost, size, and performance requirements that will make these products commercially viable. All these factors align to drive next-generation component integration, which includes embedding the antenna wi... » read more

AI: A Perfect Solution But At What Cost?


The advancement of artificial intelligence (AI) has been a great enabler for the Internet of things (IoT). Given the ability to think for itself, it’s shrugged off its original definition as a network of tiny sensors and grown to incorporate a host of more intelligent AIoT (AI+IoT) devices, from smartphones all the way up to autonomous vehicles. AI has also paved the way for new IoT device... » read more

On The Cusp Of 5G


Carriers and chipmakers are celebrating the rollout of the first standards-compliant commercial 5G services. "We are, officially in the era of 5G," said John Smee, vice president of engineering at Qualcomm at the recent 5G Summit at IEEE's International Microwave Symposium (IMS) in Boston. Movement is happening on the commercial end. Major U.S. carriers Verizon, AT&T and Sprint have set ... » read more

GaN Versus Silicon For 5G


The global race to launch 5G mmWave frequencies could provide a long-anticipated market opportunity for gallium nitride (GaN) as an alternative to silicon. GaN is more power-efficient than silicon for 5G RF. In fact, GaN has been the heir apparent to silicon in 5G power amplifiers for years, especially when it comes to mmWave 5G networks. What makes it so attractive is its ability to efficie... » read more

Challenges Grow For 5G Packages And Modules


The shift to 5G wireless networks is driving a need for new IC packages and modules in smartphones and other systems, but this move is turning out to be harder than it looks. For one thing, the IC packages and RF modules for 5G phones are more complex and expensive than today's devices, and that gap will grow significantly in the second phase of 5G. In addition, 5G devices will require an as... » read more

5G Heats Up Base Stations


Before 5G can be deployed commercially on a large scale, engineers have to solve some stubborn problems—including how to make a hot technology a whole lot cooler. 5G-capable modem chipsets are already on the market from Qualcomm, Samsung, Huawei, MediaTek, Intel and Apple, with some 5G service (LTE-Advanced/LTE-Advanced Pro) available in the U.S. But still mostly missing from the 5G equati... » read more