Power/Performance Bits: Sept. 4


Preventing battery fires Researchers from Oak Ridge National Laboratory and the University of Rochester developed a method to prevent lithium-ion batteries from catching on fire when damaged. "In a lithium-ion battery, a thin piece of plastic separates the two electrodes," said Gabriel Veith, a research lead at ORNL. "If the battery is damaged and the plastic layer fails, the electrodes can... » read more

Power/Performance Bits: Nov. 14


Bacteria power wastewater cleanup Researchers at the King Abdullah University of Science and Technology (KAUST) are exploring ways to detoxify warm, salty industrial wastewater while simultaneously generating electricity. They are using bacteria with remarkable properties: the ability to transfer electrons outside their cells (exoelectrogenes) and the capacity to withstand extremes of temperat... » read more

Power/Performance Bits: Aug. 15


Solar sunglasses Researchers at the Karlsruhe Institute of Technology (KIT) developed sunglasses with colored, semitransparent organic solar cells applied onto the lenses capable of supplying a microprocessor and two displays with electric power. The solar cell lenses, perfectly fitted to a commercial frame, have a thickness of approx. 1.6 millimeters and weigh about six grams, just like th... » read more

Power/Performance Bits: April 4


Self-sustaining microbial fuel cell Researchers at Binghamton University developed the first micro-scale self-sustaining microbial fuel cell, which generates power through the symbiotic interactions of two types of bacteria. A mixed culture of phototrophic and heterotrophic bacteria were placed in a 90-microliter cell chamber, or about one-fifth the size of a teaspoon. Phototrophic bacter... » read more

Power/Performance Bits: Jan. 3


Paper-based bacteria battery Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics. The manufacturing technique reduces fabrication time and cost, and the design could revolutionize the use of bio-batteries as a power source in remote, dangerous and resource-limited areas. ... » read more

Power/Performance Bits: June 14


Origami battery A new disposable battery that folds like an origami ninja star could power biosensors and other small devices for use in challenging field conditions. The researchers, from Binghamton University, previously developed a paper-based origami battery. The first design, shaped like a matchbook, stacked four modules together. The ninja star version, which measures about 2.5 inches ... » read more

Manufacturing Bits: April 19


Hot videos The University of Minnesota has recorded videos that show how heat travels through materials, a move that could give researchers insight into the behavior of atoms and other structures. It could also pave the way towards the development of more efficient materials for use in electronics and other applications. In the lab, researchers used FEI’s transmission electron microsc... » read more

Power/Performance Bits: April 12


Digital storage in DNA Computer scientists and electrical engineers from University of Washington and Microsoft detailed one of the first complete systems to encode, store and retrieve digital data using DNA molecules, which can store information millions of times more compactly than current archival technologies. Progress in DNA storage has been rapid: in 1999, the state-of-the-art in DN... » read more

Power/Performance Bits: June 16


Lighting up graphene A team of scientists from Columbia University, Seoul National University, and Korea Research Institute of Standards and Science demonstrated an on-chip visible light source using graphene as a filament. They attached small strips of graphene to metal electrodes, suspended the strips above the substrate, and passed a current through the filaments to cause them to heat up.... » read more

Newer posts →