Energy Storage: Properties of Barium Titanate (Harvey Mudd)


A technical paper titled "Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling" was published by researchers at Harvey Mudd College, Sandia National Lab and Air Force Research Laboratory. Abstract "Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectr... » read more

New Approaches To Power Decoupling


Decoupling capacitors have long been an important aspect of maintaining a clean power source for integrated circuits, but with noise caused by rising clock frequencies, multiple power domains, and various types of advanced packaging, new approaches are needed. Power is a much more important factor than it used to be, especially in the era of AI. “Doing an AI search consumes 10X the power t... » read more

Research Bits: May 13


On-chip microcapacitors Scientists from Lawrence Berkeley National Laboratory and University of California Berkeley developed microcapacitors with ultrahigh energy and power density that could be used for on-chip energy storage. The microcapacitors were made with thin films of hafnium oxide (HfO2) and zirconium oxide (ZrO2) engineered to achieve a negative capacitance effect, which increase... » read more

Pathfinding By Process Window Modeling


In advanced DRAM, capacitors with closely packed patterning are designed to increase cell density. Thus, advanced patterning schemes, such as multiple litho-etch, SADP and SAQP processes may be needed. In this paper, we systematically evaluate a DRAM capacitor hole formation process that includes SADP and SAQP patterning, using virtual fabrication and statistical analysis in SEMulator3D®. The ... » read more

Power/Performance Bits: June 8


High temp capacitor Researchers at Pennsylvania State University doped a dielectric capacitor to increase storage capacity while also increasing electric charge efficiency, enabling the capacitor to withstand greater voltage with very little energy loss at temperatures higher than 300 degrees Fahrenheit. “What we have done is to use interface effects in nano-dopants to increase both the stor... » read more

Scaling Battery Technology


Batteries are an essential ingredient for the growth of electronics from small devices used for IoT as well as large batteries for electric cars. Historically, battery energy density improves 5%-8% per year. While this is much slower than the historical improvements from Moore’s Law, it’s still the kind of growth that can result in leaps in efficiency, opening the door for a better experien... » read more

Power/Performance Bits: Sept. 3


Nylon capacitor Researchers at the Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, and Lodz University of Technology developed a way to fabricate ferroelectric nylon thin-film capacitors. Nylons consist of a long chain of polymers and, along with use in textiles, exhibit ferroelectric properties. However, electronic applications have been limited as there ... » read more

System Bits: July 10


Light waves run on silicon-based chips Researchers at the University of Sydney’s Nano Institute and Singapore University of Technology and Design collaborated on manipulating light waves on silicon-based microchips to keep coherent data as it travels thousands of miles on fiber-optic cables. Such waves—whether a tsunami or a photonic packet of information—are known as solitons. The... » read more

PowerDown: Power Efficiency


Power Down Semiconductor wants to make the batteries in smartphones and IoT devices last 10 times longer by not wasting power they’ve already used. Every time an intelligent device has a thought, it pulls power from a battery and sends it through its maze of wires and millions of gates to create a O or a 1 at key points in the control and logic circuits. “Think about how much energy... » read more

Neuromorphic Computing: Modeling The Brain


Can you tell the difference between a pedestrian and a bicycle? How about between a skunk and a black and white cat? Or between your neighbor’s dog and a colt or fawn? Of course you can, and you probably can do that without much conscious thought. Humans are very good at interpreting the world around them, both visually and through other sensory input. Computers are not. Though their sheer... » read more

← Older posts