中文 English

Metrology Options Increase As Device Needs Shift


Semiconductor fabs are taking an ‘all hands on deck’ approach to solving tough metrology and yield management challenges, combining tools, processes, and other technologies as the chip industry transitions to nanosheet transistors on the front end and heterogenous integration on the back end. Optical and e-beam tools are being extended, while X-ray inspection is being added on a case-by-... » read more

What’s Different About Next-Gen Transistors


After nearly a decade and five major nodes, along with a slew of half-nodes, the semiconductor manufacturing industry will begin transitioning from finFETs to gate-all-around stacked nanosheet transistor architectures at the 3nm technology node. Relative to finFETs, nanosheet transistors deliver more drive current by increasing channel widths in the same circuit footprint. The gate-all-aroun... » read more

Big Changes In Architectures, Transistors, Materials


Chipmakers are gearing up for fundamental changes in architectures, materials, and basic structures like transistors and interconnects. The net result will be more process steps, increased complexity for each of those steps, and rising costs across the board. At the leading-edge, finFETs will run out of steam somewhere after the 3nm (30 angstrom) node. The three foundries still working at th... » read more

2D Semiconductors Make Progress, But Slowly


Researchers are looking at a variety of new materials at future nodes, but progress remains slow. In recent years, 2D semiconductors have emerged as a leading potential solution to the problem of channel control in highly scaled transistors. As devices shrink, the channel thickness should shrink proportionally. Otherwise, the gate capacitance won’t be large enough to control the flow of cu... » read more

Transistors Reach Tipping Point At 3nm


The semiconductor industry is making its first major change in a new transistor type in more than a decade, moving toward a next-generation structure called gate-all-around (GAA) FETs. Although GAA transistors have yet to ship, many industry experts are wondering how long this technology will deliver — and what new architecture will take over from there. Barring major delays, today’s GAA... » read more

What’s Next For Transistors And Chiplets


Sri Samavedam, senior vice president of CMOS Technologies at Imec, sat down with Semiconductor Engineering to talk about finFET scaling, gate-all-around transistors, interconnects, packaging, chiplets and 3D SoCs. What follows are excerpts of that discussion. SE: The semiconductor technology roadmap is moving in several different directions. We have traditional logic scaling, but packaging i... » read more

The Future Of Transistors And IC Architectures


Semiconductor Engineering sat down to discuss chip scaling, transistors, new architectures, and packaging with Jerry Chen, head of global business development for manufacturing & industrials at Nvidia; David Fried, vice president of computational products at Lam Research; Mark Shirey, vice president of marketing and applications at KLA; and Aki Fujimura, CEO of D2S. What follows are excerpt... » read more

Imec’s Plan For Continued Scaling


At IEDM in December, the opening keynote (technically "Plenary 1") was by Sri Samevadam of Imec. His presentation was titled "Towards Atomic Channels and Deconstructed Chips." He presented Imec's view of the future of semiconductors going forward, both Moore's Law (scaling) and More than Moore (advanced packaging and multiple die). It is always interesting to hear Imec's view of the world sinc... » read more

Speeding Up The R&D Metrology Process


Several chipmakers are making some major changes in the characterization/metrology lab, adding more fab-like processes in this group to help speed up chip development times. The characterization/metrology lab, which is generally under the radar, is a group that works with the R&D organization and the fab. The characterization lab is involved in the early analytical work for next-generati... » read more

A Benchmark Study Of Complementary-Field Effect Transistor (CFET) Process Integration Options: Comparing Bulk vs. SOI vs. DSOI Starting Substrates


Sub-5 nm logic nodes will require an extremely high level of innovation to overcome the inherent real-estate limitations at this increased device density. One approach to increasing device density is to look at the vertical device dimension (z-direction), and stack devices on top of each other instead of conventionally side-by-side. The fabrication of a Complementary-Field Effect Transistor (CF... » read more

← Older posts